机器人
反冲
正确性
人工神经网络
职位(财务)
校准
机器人校准
补偿(心理学)
工业机器人
计算机科学
人工智能
偏转(物理)
控制理论(社会学)
计算机视觉
工程类
机器人控制
算法
数学
移动机器人
控制(管理)
统计
经济
物理
光学
财务
心理学
精神分析
作者
Hong Ha Nguyen,Phu-Nguyen Le,Hee-Jun Kang
标识
DOI:10.1177/1687814018822935
摘要
Robot position accuracy plays a very important role in advanced industrial applications. This article proposes a new method for enhancing robot position accuracy. In order to increase robot accuracy, the proposed method models and identifies determinable error sources, for instance, geometric errors and joint deflection errors. Because non-geometric error sources such as link compliance, gear backlash, and others are difficult to model correctly and completely, an artificial neural network is used for compensating for the robot position errors, which are caused by these non-geometric error sources. The proposed method is used for experimental calibration of an industrial Hyundai HH800 robot designed for carrying heavy loads. The robot position accuracy after calibration demonstrates the effectiveness and correctness of the method.
科研通智能强力驱动
Strongly Powered by AbleSci AI