马氏距离
公制(单位)
计算机科学
机器学习
人工智能
任务(项目管理)
班级(哲学)
实证研究
钥匙(锁)
相似性(几何)
功能(生物学)
领域(数学)
数据挖掘
数学
统计
工程类
图像(数学)
生物
进化生物学
计算机安全
系统工程
纯数学
运营管理
作者
Léo Gautheron,Amaury Habrard,Emilie Morvant,Marc Sebban
标识
DOI:10.1109/ictai.2019.00131
摘要
A key element of any machine learning algorithm is the use of a function that measures the dis/similarity between data points. Given a task, such a function can be optimized with a metric learning algorithm. Although this research field has received a lot of attention during the past decade, very few approaches have focused on learning a metric in an imbalanced scenario where the number of positive examples is much smaller than the negatives. Here, we address this challenging task by designing a new Mahalanobis metric learning algorithm (IML) which deals with class imbalance. The empirical study performed shows the efficiency of IML.
科研通智能强力驱动
Strongly Powered by AbleSci AI