清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Homology‐based radiomic features for prediction of the prognosis of lung cancer based on CT‐based radiomics

无线电技术 直方图 持久同源性 医学 同源(生物学) 贝蒂号码 数学 人工智能 肺癌 癌症影像学 模式识别(心理学) 计算机科学 癌症 核医学 算法 病理 生物 图像(数学) 组合数学 内科学 基因 生物化学
作者
Noriyuki Kadoya,Shohei Tanaka,Tomohiro Kajikawa,Shunpei Tanabe,Kota Abe,Y. Nakajima,Takaya Yamamoto,Noriyoshi Takahashi,Kazuya Takeda,Suguru Dobashi,Ken Takeda,Kazuaki Nakane,Keiichi Jingu
出处
期刊:Medical Physics [Wiley]
卷期号:47 (5): 2197-2205 被引量:29
标识
DOI:10.1002/mp.14104
摘要

Purpose Radiomics is a new technique that enables noninvasive prognostic prediction by extracting features from medical images. Homology is a concept used in many branches of algebra and topology that can quantify the contact degree. In the present study, we developed homology‐based radiomic features to predict the prognosis of non‐small‐cell lung cancer (NSCLC) patients and then evaluated the accuracy of this prediction method. Methods Four datasets were used: two to provide training and test data and two for the selection of robust radiomic features. All the datasets were downloaded from The Cancer Imaging Archive (TCIA). In two‐dimensional cases, the Betti numbers consist of two values: b 0 (zero‐dimensional Betti number), which is the number of isolated components, and b 1 (one‐dimensional Betti number), which is the number of one‐dimensional or “circular” holes. For homology‐based evaluation, computed tomography (CT) images must be converted to binarized images in which each pixel has two possible values: 0 or 1. All CT slices of the gross tumor volume were used for calculating the homology histogram. First, by changing the threshold of the CT value (range: −150 to 300 HU) for all its slices, we developed homology‐based histograms for b 0 , b 1 , and b 1 /b 0 using binarized images. All histograms were then summed, and the summed histogram was normalized by the number of slices. 144 homology‐based radiomic features were defined from the histogram. To compare the standard radiomic features, 107 radiomic features were calculated using the standard radiomics technique. To clarify the prognostic power, the relationship between the values of the homology‐based radiomic features and overall survival was evaluated using LASSO Cox regression model and the Kaplan–Meier method. The retained features with nonzero coefficients calculated by the LASSO Cox regression model were used for fitting the regression model. Moreover, these features were then integrated into a radiomics signature. An individualized rad score was calculated from a linear combination of the selected features, which were weighted by their respective coefficients. Results When the patients in the training and test datasets were stratified into high‐risk and low‐risk groups according to the rad scores, the overall survival of the groups was significantly different. The C‐index values for the homology‐based features (rad score), standard features (rad score), and tumor size were 0.625, 0.603, and 0.607, respectively, for the training datasets and 0.689, 0.668, and 0.667 for the test datasets. This result showed that homology‐based radiomic features had slightly higher prediction power than the standard radiomic features. Conclusions Prediction performance using homology‐based radiomic features had a comparable or slightly higher prediction power than standard radiomic features. These findings suggest that homology‐based radiomic features may have great potential for improving the prognostic prediction accuracy of CT‐based radiomics. In this result, it is noteworthy that there are some limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景安白给景安白的求助进行了留言
57秒前
宇文非笑完成签到 ,获得积分0
1分钟前
normankasimodo完成签到,获得积分10
1分钟前
1分钟前
房天川完成签到 ,获得积分0
1分钟前
hoshi完成签到 ,获得积分10
2分钟前
kmzzy完成签到,获得积分10
2分钟前
李健应助ma采纳,获得10
3分钟前
yubin.cao完成签到,获得积分10
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
解天问完成签到,获得积分10
3分钟前
4分钟前
jiangjiang完成签到 ,获得积分10
4分钟前
4分钟前
ma发布了新的文献求助10
4分钟前
4分钟前
mkeale应助科研通管家采纳,获得20
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
mkeale应助科研通管家采纳,获得10
5分钟前
mkeale应助科研通管家采纳,获得20
5分钟前
葛力发布了新的文献求助10
6分钟前
酷波er应助葛力采纳,获得10
6分钟前
dawn发布了新的文献求助10
6分钟前
6分钟前
SciGPT应助科研通管家采纳,获得10
7分钟前
8分钟前
葛力发布了新的文献求助10
8分钟前
8分钟前
葛力完成签到,获得积分10
8分钟前
8分钟前
哈哈哈完成签到,获得积分10
8分钟前
dawn发布了新的文献求助10
9分钟前
9分钟前
liwang9301完成签到,获得积分10
9分钟前
S1mple完成签到,获得积分10
9分钟前
北国雪未消完成签到 ,获得积分10
9分钟前
丘比特应助dawn采纳,获得10
10分钟前
草木发布了新的文献求助10
10分钟前
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526401
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603