油藏计算
先验与后验
计算机科学
同步(交流)
非线性系统
控制理论(社会学)
系列(地层学)
周期轨道
光学(聚焦)
非线性动力系统
动力系统理论
控制(管理)
人工智能
数学
地质学
数学分析
物理
人工神经网络
循环神经网络
计算机网络
古生物学
光学
认识论
量子力学
哲学
频道(广播)
作者
Qunxi Zhu,Huanfei Ma,Wei Lin
出处
期刊:Chaos
[American Institute of Physics]
日期:2019-09-01
卷期号:29 (9): 093125-093125
被引量:42
摘要
In this article, we focus on a topic of detecting unstable periodic orbits (UPOs) only based on the time series observed from the nonlinear dynamical system whose explicit model is completely unknown a priori. We articulate a data-driven and model-free method which connects a well-known machine learning technique, the reservoir computing, with a widely-used control strategy of nonlinear dynamical systems, the adaptive delayed feedback control. We demonstrate the advantages and effectiveness of the articulated method through detecting and controlling UPOs in representative examples and also show how those configurations of the reservoir computing in our method influence the accuracy of UPOs detection. Additionally and more interestingly, from the viewpoint of synchronization, we analytically and numerically illustrate the effectiveness of the reservoir computing in dynamical systems learning and prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI