Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering

卷积神经网络 化学 支持向量机 人工智能 拉曼光谱 拉曼散射 模式识别(心理学) 鉴定(生物学) 计算机科学 生物系统 线性判别分析 人工神经网络 光学 物理 植物 生物
作者
Jia-Ji Zhu,Arumugam Selva Sharma,Jing Xu,Yi Xu,Tianhui Jiao,Qin Ouyang,Huanhuan Li,Quansheng Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:246: 118994-118994 被引量:93
标识
DOI:10.1016/j.saa.2020.118994
摘要

In this study, a novel analytical approach is proposed for the identification of pesticide residues in tea by combining surface-enhanced Raman scattering (SERS) with a deep learning method one-dimensional convolutional neural network (1D CNN). First, a handheld Raman spectrometer was used for rapid on-site collection of SERS spectra. Second, the collected SERS spectra were augmented by a data augmentation strategy. Third, based on the augmented SERS spectra, the 1D CNN models were established on the cloud server, and then the trained 1D CNN models were used for subsequent pesticide residue identification analysis. In addition, to investigate the identification performance of the 1D CNN method, four conventional identification methods, including partial least square-discriminant analysis (PLS-DA), k-nearest neighbour (k−NN), support vector machine (SVM) and random forest (RF), were also developed on the basis of the augmented SERS spectra and applied for pesticide residue identification analysis. The comparative studies show that the 1D CNN method possesses better identification accuracy, stability and sensitivity than the other four conventional identification methods. In conclusion, the proposed novel analytical approach that exploits the advantages of SERS and a deep learning method (1D CNN) is a promising method for rapid on-site identification of pesticide residues in tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
gao完成签到,获得积分10
3秒前
4秒前
敏感钥匙完成签到 ,获得积分10
5秒前
6秒前
nicaicai完成签到,获得积分10
7秒前
爱莉希雅发布了新的文献求助10
8秒前
Yuanyuan完成签到,获得积分10
8秒前
happyou发布了新的文献求助10
9秒前
寒霜扬名完成签到,获得积分10
11秒前
Chen发布了新的文献求助10
12秒前
香蕉觅云应助乌龙茶干采纳,获得10
12秒前
yyds发布了新的文献求助10
14秒前
mervin发布了新的文献求助10
14秒前
踏雪完成签到,获得积分10
17秒前
南北完成签到,获得积分10
18秒前
华仔应助happyou采纳,获得10
18秒前
SciGPT应助心灵美金鑫采纳,获得10
21秒前
cc完成签到,获得积分10
22秒前
26秒前
cjjwei完成签到 ,获得积分10
27秒前
28秒前
酷波er应助美满的弱采纳,获得10
29秒前
29秒前
Nikola完成签到 ,获得积分10
29秒前
江新儿发布了新的文献求助10
30秒前
乌龙茶干发布了新的文献求助10
30秒前
31秒前
32秒前
32秒前
33秒前
33秒前
崔略商发布了新的文献求助10
33秒前
lindahuang发布了新的文献求助30
34秒前
34秒前
37秒前
我是老大应助meng采纳,获得10
37秒前
乌龙茶干完成签到,获得积分10
38秒前
38秒前
科研通AI5应助江新儿采纳,获得10
40秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838427
求助须知:如何正确求助?哪些是违规求助? 3380725
关于积分的说明 10515658
捐赠科研通 3100360
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821733
科研通“疑难数据库(出版商)”最低求助积分说明 772930