Rapid on-site identification of pesticide residues in tea by one-dimensional convolutional neural network coupled with surface-enhanced Raman scattering

卷积神经网络 化学 支持向量机 人工智能 拉曼光谱 拉曼散射 模式识别(心理学) 鉴定(生物学) 计算机科学 生物系统 线性判别分析 人工神经网络 光学 物理 植物 生物
作者
Jia-Ji Zhu,Arumugam Selva Sharma,Jing Xu,Yi Xu,Tianhui Jiao,Qin Ouyang,Huanhuan Li,Quansheng Chen
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:246: 118994-118994 被引量:108
标识
DOI:10.1016/j.saa.2020.118994
摘要

In this study, a novel analytical approach is proposed for the identification of pesticide residues in tea by combining surface-enhanced Raman scattering (SERS) with a deep learning method one-dimensional convolutional neural network (1D CNN). First, a handheld Raman spectrometer was used for rapid on-site collection of SERS spectra. Second, the collected SERS spectra were augmented by a data augmentation strategy. Third, based on the augmented SERS spectra, the 1D CNN models were established on the cloud server, and then the trained 1D CNN models were used for subsequent pesticide residue identification analysis. In addition, to investigate the identification performance of the 1D CNN method, four conventional identification methods, including partial least square-discriminant analysis (PLS-DA), k-nearest neighbour (k−NN), support vector machine (SVM) and random forest (RF), were also developed on the basis of the augmented SERS spectra and applied for pesticide residue identification analysis. The comparative studies show that the 1D CNN method possesses better identification accuracy, stability and sensitivity than the other four conventional identification methods. In conclusion, the proposed novel analytical approach that exploits the advantages of SERS and a deep learning method (1D CNN) is a promising method for rapid on-site identification of pesticide residues in tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绝望的文盲应助MelonWong采纳,获得10
1秒前
shiyu完成签到 ,获得积分20
1秒前
1秒前
1秒前
王一一完成签到,获得积分10
1秒前
Aylin完成签到,获得积分10
1秒前
2秒前
null应助winwing采纳,获得10
2秒前
lucktuan发布了新的文献求助10
2秒前
小羊完成签到 ,获得积分10
2秒前
姜姜完成签到,获得积分20
3秒前
大可发布了新的文献求助10
3秒前
沉默的白桃完成签到,获得积分10
3秒前
共享精神应助Guyingying采纳,获得10
3秒前
4秒前
小菅完成签到,获得积分10
4秒前
汉堡包应助TEDDY采纳,获得10
4秒前
4秒前
科yt完成签到,获得积分10
4秒前
4秒前
4秒前
糊涂的康完成签到,获得积分10
4秒前
fzy完成签到,获得积分10
5秒前
5秒前
Dexter发布了新的文献求助10
5秒前
Aba完成签到,获得积分10
6秒前
6秒前
欢呼忆丹发布了新的文献求助10
7秒前
7秒前
ZiZi发布了新的文献求助10
7秒前
斯文败类应助竞鹤采纳,获得10
7秒前
8秒前
活力半蕾完成签到,获得积分10
8秒前
搜集达人应助王曼曼采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
智慧金刚完成签到 ,获得积分10
8秒前
8秒前
魏淑芹完成签到,获得积分10
9秒前
yls发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410713
求助须知:如何正确求助?哪些是违规求助? 4528079
关于积分的说明 14114318
捐赠科研通 4442786
什么是DOI,文献DOI怎么找? 2438020
邀请新用户注册赠送积分活动 1430164
关于科研通互助平台的介绍 1408008