数学
凸函数
拉格朗日乘数
凸优化
正多边形
可分离空间
黄金分割率
秩(图论)
应用数学
趋同(经济学)
对偶(语法数字)
功能(生物学)
收敛速度
凸分析
数学优化
数学分析
组合数学
计算机科学
钥匙(锁)
几何学
生物
进化生物学
文学类
艺术
经济增长
经济
计算机安全
作者
Feng Ma,Jiansheng Shu,Yaxiong Li,Jian Wu
摘要
The alternating direction method of multipliers (ADMM) is one of the most well-known optimization scheme for solving linearly constrained separable convex problem. In the literature, Fortin and Glowinski proved that the step size for updating the Lagrange multiplier of the ADMM can be chosen in the open interval of zero to the golden ratio. But, it is still unknown whether the dual step size can be larger than the golden ratio. In this paper, for the case where one function term is strongly convex and the associate coefficient matrix is full column rank, we present an affirmative answer to the above question. We then derive an exact relationship between the modulus and the dual step size. Our analysis deepens the understanding of the convergence properties of the ADMM.
科研通智能强力驱动
Strongly Powered by AbleSci AI