亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning

抗菌肽 抗菌剂 副溶血性弧菌 深度学习 计算生物学 生物 枯草芽孢杆菌 人工智能 微生物学 计算机科学 细菌 遗传学
作者
Jielu Yan,Pratiti Bhadra,Ang Li,Pooja Sethiya,Longguang Qin,Hio Kuan Tai,Koon Ho Wong,Shirley W. I. Siu
出处
期刊:Molecular therapy. Nucleic acids [Elsevier]
卷期号:20: 882-894 被引量:222
标识
DOI:10.1016/j.omtn.2020.05.006
摘要

Antimicrobial peptides (AMPs) are a valuable source of antimicrobial agents and a potential solution to the multi-drug resistance problem. In particular, short-length AMPs have been shown to have enhanced antimicrobial activities, higher stability, and lower toxicity to human cells. We present a short-length (≤30 aa) AMP prediction method, Deep-AmPEP30, developed based on an optimal feature set of PseKRAAC reduced amino acids composition and convolutional neural network. On a balanced benchmark dataset of 188 samples, Deep-AmPEP30 yields an improved performance of 77% in accuracy, 85% in the area under the receiver operating characteristic curve (AUC-ROC), and 85% in area under the precision-recall curve (AUC-PR) over existing machine learning-based methods. To demonstrate its power, we screened the genome sequence of Candida glabrata—a gut commensal fungus expected to interact with and/or inhibit other microbes in the gut—for potential AMPs and identified a peptide of 20 aa (P3, FWELWKFLKSLWSIFPRRRP) with strong anti-bacteria activity against Bacillus subtilis and Vibrio parahaemolyticus. The potency of the peptide is remarkably comparable to that of ampicillin. Therefore, Deep-AmPEP30 is a promising prediction tool to identify short-length AMPs from genomic sequences for drug discovery. Our method is available at https://cbbio.cis.um.edu.mo/AxPEP for both individual sequence prediction and genome screening for AMPs. Antimicrobial peptides (AMPs) are a valuable source of antimicrobial agents and a potential solution to the multi-drug resistance problem. In particular, short-length AMPs have been shown to have enhanced antimicrobial activities, higher stability, and lower toxicity to human cells. We present a short-length (≤30 aa) AMP prediction method, Deep-AmPEP30, developed based on an optimal feature set of PseKRAAC reduced amino acids composition and convolutional neural network. On a balanced benchmark dataset of 188 samples, Deep-AmPEP30 yields an improved performance of 77% in accuracy, 85% in the area under the receiver operating characteristic curve (AUC-ROC), and 85% in area under the precision-recall curve (AUC-PR) over existing machine learning-based methods. To demonstrate its power, we screened the genome sequence of Candida glabrata—a gut commensal fungus expected to interact with and/or inhibit other microbes in the gut—for potential AMPs and identified a peptide of 20 aa (P3, FWELWKFLKSLWSIFPRRRP) with strong anti-bacteria activity against Bacillus subtilis and Vibrio parahaemolyticus. The potency of the peptide is remarkably comparable to that of ampicillin. Therefore, Deep-AmPEP30 is a promising prediction tool to identify short-length AMPs from genomic sequences for drug discovery. Our method is available at https://cbbio.cis.um.edu.mo/AxPEP for both individual sequence prediction and genome screening for AMPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
18秒前
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
ceeray23应助科研通管家采纳,获得10
18秒前
liubai发布了新的文献求助10
20秒前
dfb发布了新的文献求助10
22秒前
踏实善若完成签到,获得积分10
36秒前
踏实善若发布了新的文献求助10
52秒前
胖小羊完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
飞机云发布了新的文献求助10
2分钟前
传奇3应助飞机云采纳,获得10
2分钟前
dfb完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
直率的雪巧完成签到,获得积分10
4分钟前
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
1461644768完成签到,获得积分10
4分钟前
毕嵩山发布了新的文献求助10
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
传奇3应助毕嵩山采纳,获得10
4分钟前
liuyingjuan829完成签到,获得积分20
4分钟前
香蕉觅云应助邢契采纳,获得10
5分钟前
5分钟前
didididm完成签到,获得积分10
5分钟前
天天快乐应助xuan采纳,获得10
5分钟前
毕嵩山发布了新的文献求助10
5分钟前
5分钟前
5分钟前
xuan发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749550
什么是DOI,文献DOI怎么找? 2549289
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091