Using Machine Learning to Evaluate Attending Feedback on Resident Performance

机器学习 质量(理念) 人工智能 班级(哲学) 医学 计算机科学 灵敏度(控制系统) 电子工程 认识论 工程类 哲学
作者
Sara E. Neves,Michael Chen,Cindy Ku,Suzanne Karan,Amy N. DiLorenzo,Randall M. Schell,Daniel E. Lee,Carol Ann B. Diachun,Stephanie B. Jones,John Mitchell
出处
期刊:Anesthesia & Analgesia [Lippincott Williams & Wilkins]
卷期号:132 (2): 545-555 被引量:22
标识
DOI:10.1213/ane.0000000000005265
摘要

BACKGROUND: High-quality and high-utility feedback allows for the development of improvement plans for trainees. The current manual assessment of the quality of this feedback is time consuming and subjective. We propose the use of machine learning to rapidly distinguish the quality of attending feedback on resident performance. METHODS: Using a preexisting databank of 1925 manually reviewed feedback comments from 4 anesthesiology residency programs, we trained machine learning models to predict whether comments contained 6 predefined feedback traits (actionable, behavior focused, detailed, negative feedback, professionalism/communication, and specific) and predict the utility score of the comment on a scale of 1–5. Comments with ≥4 feedback traits were classified as high-quality and comments with ≥4 utility scores were classified as high-utility; otherwise comments were considered low-quality or low-utility, respectively. We used RapidMiner Studio (RapidMiner, Inc, Boston, MA), a data science platform, to train, validate, and score performance of models. RESULTS: Models for predicting the presence of feedback traits had accuracies of 74.4%–82.2%. Predictions on utility category were 82.1% accurate, with 89.2% sensitivity, and 89.8% class precision for low-utility predictions. Predictions on quality category were 78.5% accurate, with 86.1% sensitivity, and 85.0% class precision for low-quality predictions. Fifteen to 20 hours were spent by a research assistant with no prior experience in machine learning to become familiar with software, create models, and review performance on predictions made. The program read data, applied models, and generated predictions within minutes. In contrast, a recent manual feedback scoring effort by an author took 15 hours to manually collate and score 200 comments during the course of 2 weeks. CONCLUSIONS: Harnessing the potential of machine learning allows for rapid assessment of attending feedback on resident performance. Using predictive models to rapidly screen for low-quality and low-utility feedback can aid programs in improving feedback provision, both globally and by individual faculty.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
611完成签到,获得积分10
1秒前
天空之成发布了新的文献求助30
2秒前
小宁完成签到,获得积分20
2秒前
2秒前
清爽秋寒发布了新的文献求助50
3秒前
猫猫up完成签到,获得积分10
3秒前
小鱼还没睡a完成签到,获得积分10
4秒前
隐形曼青应助Pluto采纳,获得10
4秒前
小宁发布了新的文献求助10
5秒前
猫猫up发布了新的文献求助10
7秒前
米饭多加水发布了新的文献求助150
7秒前
wsq完成签到,获得积分10
9秒前
孙建波完成签到,获得积分10
11秒前
orixero应助laola采纳,获得10
13秒前
SciGPT应助鲜于元龙采纳,获得10
14秒前
Akim应助dreamer采纳,获得10
15秒前
15秒前
17秒前
充电宝应助科研小白采纳,获得10
17秒前
JoeyCory完成签到,获得积分10
18秒前
20秒前
啾咪发布了新的文献求助10
20秒前
程超发布了新的文献求助10
20秒前
21秒前
医痞子发布了新的文献求助10
21秒前
童林艳发布了新的文献求助10
23秒前
23秒前
24秒前
赵康健完成签到,获得积分10
24秒前
美由姬发布了新的文献求助10
26秒前
27秒前
27秒前
Icy发布了新的文献求助10
28秒前
30秒前
小遇完成签到,获得积分10
31秒前
31秒前
徐开心完成签到,获得积分10
32秒前
35秒前
复杂研究牲完成签到,获得积分10
35秒前
从容傲柏发布了新的文献求助10
36秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110160
求助须知:如何正确求助?哪些是违规求助? 3648426
关于积分的说明 11556558
捐赠科研通 3354056
什么是DOI,文献DOI怎么找? 1842727
邀请新用户注册赠送积分活动 908916
科研通“疑难数据库(出版商)”最低求助积分说明 825842