Radiative heat transfer in nanophotonics: From thermal radiation enhancement theory to radiative cooling applications

热辐射 辐射传输 纳米光子学 辐射冷却 辐射 材料科学 辐射特性 被动冷却 黑体辐射 超材料 传热 物理 光电子学 工程物理 光学 机械 热力学
作者
Liu Yang,Deng Pan,Wen Chen,Wenqiang Wang,Hao Shen,Hongxing Xu
出处
期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences]
卷期号:69 (3): 036501-036501 被引量:12
标识
DOI:10.7498/aps.69.20191906
摘要

Thermal radiation, as a ubiquitous physical phenomenon, plays an important role in various research fields of science and engineering. Traditional understanding of thermal radiation mainly relies on Planck’s law, which describes the energy exchanging efficiency of entire thermal radiation process. However, recent studies indicated that comparing with the macroscopic object obeying Planck’s law, the thermal radiation in nanophotonic structures is obviously abnormal. This is due to the fact that the nanostructures’ featured size or neighboring space are much smaller than the thermal wavelength. It is important to notice that by well designing the material, size, and structure pattern, the thermal radiation is tunable and controllable. Furthermore, the nanophotonic structures enabling the radiative cooling effects promise to possess the tremendous applications including energy, ecology, etc. In this review paper, firstly, we briefly describe the fundamental theory of thermal radiation, as well as the history and latest progress, such as, enhanced radiative heat transfer, the near-field radiation in two-dimensional materials, and the overall far-field enhancement. Secondly, we focus on the newly available daytime radiative cooling system, which is based on metamaterials or desired nanophotonic structures, pursuing the best cooling performances. Finally, we detail the checklists of remarkable applications, ranging from building cooling and dew collection to solar cell cooling. In addition, we also point out the broad future of radiation cooling technology of nanometer optical materials in promoting the management and transformation of desert ecological environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助Mmxn采纳,获得10
1秒前
领导范儿应助爱打乒乓球采纳,获得30
1秒前
GLv完成签到,获得积分10
1秒前
1秒前
gggkky应助ruarua采纳,获得10
2秒前
杨松发布了新的文献求助10
2秒前
2秒前
2秒前
小羿羿呀发布了新的文献求助10
2秒前
思源应助鱼糕采纳,获得30
2秒前
超帅的元柏完成签到,获得积分10
3秒前
CodeCraft应助小马采纳,获得10
3秒前
darlinglu完成签到,获得积分10
3秒前
学海行舟发布了新的文献求助10
3秒前
Lucas应助康康采纳,获得10
3秒前
3秒前
4秒前
4秒前
5秒前
5秒前
6秒前
Akim应助zhangjiabin采纳,获得10
6秒前
狂野的驳完成签到 ,获得积分10
6秒前
7秒前
打打应助杨松采纳,获得10
7秒前
7秒前
文子大王完成签到,获得积分10
7秒前
完美世界应助chenshinkirou采纳,获得10
7秒前
7秒前
希望天下0贩的0应助GYB采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
mtym发布了新的文献求助10
8秒前
叶子宁完成签到,获得积分10
9秒前
Lee.K.Y发布了新的文献求助10
9秒前
gggkky应助ruarua采纳,获得10
10秒前
科研通AI2S应助轻松博超采纳,获得10
10秒前
CodeCraft应助无情干饭崽采纳,获得10
10秒前
师大六神发布了新的文献求助10
10秒前
li完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477844
求助须知:如何正确求助?哪些是违规求助? 4579685
关于积分的说明 14369630
捐赠科研通 4507897
什么是DOI,文献DOI怎么找? 2470257
邀请新用户注册赠送积分活动 1457152
关于科研通互助平台的介绍 1431066