可控性
数学
分拆(数论)
线性子空间
上下界
组合数学
基质(化学分析)
子空间拓扑
离散数学
复杂网络
标量(数学)
基数(数据建模)
维数(图论)
纯数学
计算机科学
应用数学
数据挖掘
数学分析
复合材料
材料科学
几何学
作者
Lulu Pan,Haibin Shao,Mehran Mesbahi,Yugeng Xi,Dewei Li
出处
期刊:IEEE Control Systems Letters
日期:2020-03-17
卷期号:4 (3): 572-577
被引量:16
标识
DOI:10.1109/lcsys.2020.2981038
摘要
This letter examines the controllability of matrix-weighed networks from a graph-theoretic perspective. As distinct from the scalar-weighted networks, the rank of weight matrices introduce additional intricacies into characterizing the dimension of the controllable subspace for such networks. Specifically, we investigate how the definiteness of weight matrices, encoding a generalized characterization of inter-agent connectivity on matrix-weighted networks, influences the lower and upper bounds of the associated controllable subspaces. We show that such a lower bound is determined by the existence of a certain positive path in the distance partition of the network. By introducing the notion of matrix-valued almost equitable partitions, we show that the corresponding upper bound is determined by the product of the dimension of the weight matrices and the cardinality of the associated matrix-valued almost equitable partition. Furthermore, the structure of an uncontrollable input for such networks is examined.
科研通智能强力驱动
Strongly Powered by AbleSci AI