Using machine learning to synthesize spatiotemporal data for modelling DBH-height and DBH-height-age relationships in boreal forests

胸径 泰加语 比例(比率) 可持续森林管理 森林动态 树(集合论) 森林经营 环境科学 森林资源清查 生态学 自然地理学 地理 林业 数学 地图学 农林复合经营 生物 数学分析
作者
Jiaxin Chen,Hongqiang Yang,Rongzhou Man,Weifeng Wang,Mahadev Sharma,Changhui Peng,John Parton,Huaiping Zhu,Ziwang Deng
出处
期刊:Forest Ecology and Management [Elsevier BV]
卷期号:466: 118104-118104 被引量:24
标识
DOI:10.1016/j.foreco.2020.118104
摘要

Sustainable forest management requires the ability to accurately model forest dynamics under a changing environment, which is difficult using conventional statistical methods as many factors that interactively affect forest growth must be considered. As well, statistical model development is often limited by the lack of broad-scale repeated forest measurements needed to capture changes in 1 or more variables and the corresponding changes in forest dynamics (e.g., growth in diameter and height), while assuming other variables do not change, or their changes do not significantly affect the forest dynamics of interest. In many forested countries, comprehensive monitoring programs have amassed large amounts of diverse forest measurement data. Here we propose a new approach for using artificial neural network-based machine learning to synthesize spatiotemporal tree measurement data collected over a vast area of boreal forest in central Canada to model diameter at breast height (DBH)-height and DBH-height-age relationships for 6 dominant tree species. More than 30 potentially important stand structure, site, and climate variables were considered. We used an individual-based modelling approach by considering each individual tree measurement as an instance of the complex relationships modelled; together, broad-scale long-term monitoring data contain many such instances, representing considerable spatial and temporal scale variation in forest growth and growing conditions. Using this approach, we significantly improved DBH-height and DBH-height-age models. And the models developed allowed us to analyze the effects of environmental conditions or changes in these conditions on forest growth. This may be the first attempt at applying this type of approach, which can be used to more accurately model, for example, forest growth, mortality, and how they are affected by changing climate in a variety of forest types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助msy采纳,获得10
刚刚
共享精神应助CIOOICO1采纳,获得10
1秒前
2秒前
MM完成签到,获得积分10
2秒前
3秒前
认真的雪发布了新的文献求助10
3秒前
酷波er应助伶俐的书白采纳,获得10
4秒前
4秒前
祖国大西北完成签到,获得积分10
4秒前
沙漠水发布了新的文献求助10
4秒前
5秒前
6秒前
蒺藜发布了新的文献求助10
6秒前
8秒前
山石发布了新的文献求助10
8秒前
天真的香寒完成签到 ,获得积分10
8秒前
黄思雨发布了新的文献求助10
9秒前
橡树果应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
10秒前
搜集达人应助surain采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
Duolalala发布了新的文献求助10
10秒前
10秒前
10秒前
来日昭昭应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
11秒前
橡树果应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
Bebebe发布了新的文献求助10
11秒前
11秒前
12秒前
yan完成签到,获得积分10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110