Reducing Polar Decoding Latency by Neural Network-Based On-the-Fly Decoder Selection

解码方法 计算机科学 顺序译码 列表解码 算法 延迟(音频) 语音识别 实时计算 电信 区块代码 级联纠错码
作者
Ahmed Elkelesh,Sebastian Cammerer,Stephan ten Brink
标识
DOI:10.1109/sips50750.2020.9195233
摘要

The state-of-the-art decoding algorithm of polar codes is the successive cancellation list (SCL) decoder which approaches the error-rate performance of the maximum like lihood (ML) decoder assuming a sufficiently large list size. However, SCL decoding comes at the price of a high decoding latency due to its sequential nature and, further, high throughput implementations are challenging. Contrarily, the iterative belief propagation (BP) decoder offers inherent parallelism with the possibility of high throughput and low-latency implementations but suffers from a degraded error-rate performance. We train a neural network (NN)-based estimator to pre-select - only based on the received noisy channel observation - the most efficient decoder (i.e., BP or SCL) before decoding. In other words, we aim to have the best of both worlds and, thus, to use the BP decoder whenever possible. This enables the same (good) error-rate performance of the SCL decoder but with a higher decoding efficiency and, in particular, with an - on average - lower decoding latency. We implement and train this scheme as a ternary classifier which can immediately ask for a re-transmission when no decoding success at all is expected. Further, we show that the main difficulty during training is the unequal distribution of events in the dataset (for practical signal-to-noise-ratio (SNR) a decoding failure is an unlikely event) that, however, essentially impacts the effective overall performance. Finally, we analyze different training methodologies to circumvent this limitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椰果完成签到,获得积分10
1秒前
魏伯安完成签到,获得积分10
4秒前
11秒前
星宿陨完成签到,获得积分10
12秒前
科研通AI5应助Suyi采纳,获得10
13秒前
lxy完成签到,获得积分10
14秒前
huahua完成签到 ,获得积分10
15秒前
一棵好困芽完成签到 ,获得积分10
21秒前
黑布林大李子完成签到,获得积分0
24秒前
仁者无惧完成签到 ,获得积分10
25秒前
hahajiang发布了新的文献求助10
27秒前
27秒前
Jasper应助科研通管家采纳,获得10
30秒前
单纯的文龙应助科研通管家采纳,获得100
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
30秒前
隐形曼青应助科研通管家采纳,获得10
30秒前
上官若男应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得10
31秒前
wshwx发布了新的文献求助10
32秒前
35秒前
38秒前
39秒前
无花果应助meat12采纳,获得10
39秒前
听白发布了新的文献求助10
42秒前
hahajiang完成签到,获得积分10
43秒前
45秒前
Akiii_完成签到,获得积分10
48秒前
52秒前
54秒前
meat12完成签到,获得积分10
55秒前
苏七完成签到,获得积分10
57秒前
kk发布了新的文献求助10
58秒前
听白完成签到,获得积分10
1分钟前
1分钟前
Echo1128完成签到 ,获得积分10
1分钟前
1分钟前
ycc完成签到,获得积分10
1分钟前
1分钟前
Young完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776406
求助须知:如何正确求助?哪些是违规求助? 3321789
关于积分的说明 10207888
捐赠科研通 3037141
什么是DOI,文献DOI怎么找? 1666556
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757872