DFR-TSD: A Deep Learning Based Framework for Robust Traffic Sign Detection Under Challenging Weather Conditions

计算机科学 卷积神经网络 人工智能 深度学习 交通标志识别 水准点(测量) 分类器(UML) 模式识别(心理学) 机器学习 边距(机器学习) 交通标志 符号(数学) 大地测量学 数学 数学分析 地理
作者
Sabbir Ahmed,Uday Kamal,Md. Kamrul Hasan
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (6): 5150-5162 被引量:76
标识
DOI:10.1109/tits.2020.3048878
摘要

Robust traffic sign detection and recognition (TSDR) is of paramount importance for the successful realization of autonomous vehicle technology. The importance of this task has led to vast amount of research efforts and many promising methods have been proposed in the existing literature. However, most of these methods have been evaluated on clean and challenge-free datasets and overlooked the performance deterioration associated with different challenging conditions (CCs) that obscure the traffic-sign images captured in the wild. In this paper, we look at the TSDR problem under CCs and focus on the performance degradation associated with them. To this end, we propose a Convolutional Neural Network (CNN) based prior enhancement focused TSDR framework. Our modular approach consists of a CNN-based challenge classifier, Enhance-Net–an encoder-decoder CNN architecture for image enhancement, and two separate CNN architectures for sign-detection and classification. We propose a novel training pipeline for Enhance-Net that focuses on the enhancement of the traffic sign regions (instead of the whole image) in the challenging images subject to their accurate detection. We used CURE-TSD dataset consisting of traffic videos captured under different CCs to evaluate the efficacy of our approach. We experimentally show that our method obtains an overall precision and recall of 91.1% and 70.71% that is 7.58% and 35.90% improvement in precision and recall, respectively, compared to the current benchmark. Furthermore, we compare our approach with different CNN-based TSDR methods and show that our approach outperforms them by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘国建郭菱香完成签到 ,获得积分10
1秒前
1秒前
2秒前
超人爱吃菠菜完成签到,获得积分10
3秒前
eyu发布了新的文献求助10
3秒前
刘帅完成签到,获得积分10
4秒前
7秒前
8秒前
8秒前
8秒前
无辜的蜗牛完成签到 ,获得积分10
8秒前
cz发布了新的文献求助10
9秒前
李爱国应助luen采纳,获得10
10秒前
charles发布了新的文献求助10
11秒前
冷静丸子完成签到 ,获得积分10
11秒前
xxx发布了新的文献求助10
12秒前
13秒前
隐形的谷槐完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
风禾尽起完成签到 ,获得积分10
16秒前
俭朴的翠阳完成签到,获得积分10
16秒前
二二发布了新的文献求助10
18秒前
19秒前
flying发布了新的文献求助20
19秒前
21秒前
22秒前
22秒前
24秒前
世间多长关注了科研通微信公众号
24秒前
saki发布了新的文献求助10
27秒前
27秒前
猫猫味的棒棒糖关注了科研通微信公众号
28秒前
32秒前
32秒前
上官若男应助眼睛大过客采纳,获得10
33秒前
大模型应助二二采纳,获得10
33秒前
brave完成签到 ,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601676
求助须知:如何正确求助?哪些是违规求助? 4687108
关于积分的说明 14847661
捐赠科研通 4681810
什么是DOI,文献DOI怎么找? 2539466
邀请新用户注册赠送积分活动 1506355
关于科研通互助平台的介绍 1471335