Highly accurate artificial intelligence systems to predict the invasion depth of gastric cancer: efficacy of conventional white-light imaging, nonmagnifying narrow-band imaging, and indigo-carmine dye contrast imaging

医学 靛蓝胭脂红 白光 窄带成像 靛蓝 核医学 病变 预测值 人工智能 放射科 对比度(视觉) 光学 病理 内窥镜检查 内科学 计算机科学 化学 物理 核化学
作者
Sayaka Nagao,Yosuke Tsuji,Yoshiki Sakaguchi,Yu Takahashi,Chihiro Minatsuki,Keiko Niimi,Hiroharu Yamashita,Nobutake Yamamichi,Yasuyuki Seto,Tomohiro Tada,Kazuhiko Koike
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:92 (4): 866-873.e1 被引量:89
标识
DOI:10.1016/j.gie.2020.06.047
摘要

Diagnosing the invasion depth of gastric cancer (GC) is necessary to determine the optimal method of treatment. Although the efficacy of evaluating macroscopic features and EUS has been reported, there is a need for more accurate and objective methods. The primary aim of this study was to test the efficacy of novel artificial intelligence (AI) systems in predicting the invasion depth of GC.A total of 16,557 images from 1084 cases of GC for which endoscopic resection or surgery was performed between January 2013 and June 2019 were extracted. Cases were randomly assigned to training and test datasets at a ratio of 4:1. Through transfer learning leveraging a convolutional neural network architecture, ResNet50, 3 independent AI systems were developed. Each system was trained to predict the invasion depth of GC using conventional white-light imaging (WLI), nonmagnifying narrow-band imaging (NBI), and indigo-carmine dye contrast imaging (Indigo).The area under the curve of the WLI AI system was .9590. The lesion-based sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of the WLI AI system were 84.4%, 99.4%, 94.5%, 98.5%, and 92.9%, respectively. The lesion-based accuracies of the WLI, NBI, and Indigo AI systems were 94.5%, 94.3%, and 95.5%, respectively, with no significant difference.These new AI systems trained with multiple images from different angles and distances could predict the invasion depth of GC with high accuracy. The lesion-based accuracy of the WLI, NBI, and Indigo AI systems was not significantly different.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤金连完成签到,获得积分10
2秒前
传奇3应助周胜采纳,获得10
3秒前
Nature_PhD完成签到,获得积分10
4秒前
zwd完成签到,获得积分10
5秒前
一丁雨完成签到,获得积分10
5秒前
火星上誉完成签到 ,获得积分10
6秒前
桃花不换酒完成签到,获得积分10
10秒前
zhang完成签到,获得积分10
11秒前
14秒前
jj完成签到,获得积分10
14秒前
雨后完成签到 ,获得积分10
15秒前
aaa0001984完成签到,获得积分0
16秒前
幸福妙柏完成签到 ,获得积分10
17秒前
mouset270发布了新的文献求助10
17秒前
动听的弼完成签到 ,获得积分10
18秒前
zhangyuting完成签到 ,获得积分10
19秒前
20秒前
bearvik发布了新的文献求助10
22秒前
悦耳短靴完成签到 ,获得积分10
22秒前
萝卜卷心菜完成签到 ,获得积分10
24秒前
bkagyin应助碧海琴天Candyship采纳,获得10
27秒前
科研通AI6应助zzzzzx采纳,获得10
27秒前
29秒前
lee完成签到 ,获得积分10
29秒前
就这样完成签到 ,获得积分10
29秒前
不敢装睡完成签到,获得积分10
30秒前
123Y完成签到,获得积分10
31秒前
gjq完成签到,获得积分10
31秒前
wuxunxun2015完成签到,获得积分10
32秒前
melisa完成签到,获得积分10
32秒前
Jeffery426发布了新的文献求助10
35秒前
撒啊完成签到,获得积分10
35秒前
Pengcheng完成签到 ,获得积分10
36秒前
鸭鸭完成签到 ,获得积分10
37秒前
mmr完成签到,获得积分10
39秒前
朱科源啊源完成签到 ,获得积分10
40秒前
ma完成签到,获得积分10
45秒前
betty2009完成签到,获得积分10
48秒前
蓝桉完成签到,获得积分10
49秒前
那一瞬的永恒完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4800682
求助须知:如何正确求助?哪些是违规求助? 4119277
关于积分的说明 12743514
捐赠科研通 3850883
什么是DOI,文献DOI怎么找? 2121237
邀请新用户注册赠送积分活动 1143463
关于科研通互助平台的介绍 1033226