Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle

DNA纳米技术 组合化学 纳米技术 自组装 纳米反应器 化学工程 脱氧核酶
作者
William P. Klein,Rasmus P. Thomsen,Kendrick B. Turner,Scott A. Walper,James N. Vranish,Jørgen Kjems,Mario G. Ancona,Igor L Medintz
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (12): 13677-13689 被引量:40
标识
DOI:10.1021/acsnano.9b05746
摘要

Developing reliable methods of constructing cell-free multienzyme biocatalytic systems is a milestone goal of synthetic biology. It would enable overcoming the limitations of current cell-based systems, which suffer from the presence of competing pathways, toxicity, and inefficient access to extracellular reactants and removal of products. DNA nanostructures have been suggested as ideal scaffolds for assembling sequential enzymatic cascades in close enough proximity to potentially allow for exploiting of channeling effects; however, initial demonstrations have provided somewhat contradictory results toward confirming this phenomenon. In this work, a three-enzyme sequential cascade was realized by site-specifically immobilizing DNA-conjugated amylase, maltase, and glucokinase on a self-assembled DNA origami triangle. The kinetics of seven different enzyme configurations were evaluated experimentally and compared to simulations of optimized activity. A 30-fold increase in the pathway's kinetic activity was observed for enzymes assembled to the DNA. Detailed kinetic analysis suggests that this catalytic enhancement originated from increased enzyme stability and a localized DNA surface affinity or hydration layer effect and not from a directed enzyme-to-enzyme channeling mechanism. Nevertheless, the approach used to construct this pathway still shows promise toward improving other more elaborate multienzymatic cascades and could potentially allow for the custom synthesis of complex (bio)molecules that cannot be realized with conventional organic chemistry approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lalala应助ss采纳,获得10
1秒前
李健应助dddjs采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
hj1234完成签到,获得积分10
4秒前
年轻小之发布了新的文献求助10
4秒前
酷波er应助科研小白采纳,获得10
5秒前
5秒前
Hello应助mm采纳,获得10
5秒前
果果糖YLJ完成签到,获得积分10
6秒前
重要衬衫发布了新的文献求助10
6秒前
7秒前
7秒前
赘婿应助幸福的诗兰采纳,获得10
7秒前
拼搏的中蓝完成签到,获得积分20
8秒前
Qiaoclin发布了新的文献求助10
8秒前
yangjun完成签到,获得积分10
9秒前
充电宝应助1111采纳,获得10
9秒前
研友_nPb9e8完成签到,获得积分10
9秒前
hbydyy发布了新的文献求助10
9秒前
9秒前
深情安青应助科研渣渣采纳,获得10
9秒前
幽篁深韵完成签到,获得积分20
11秒前
JamesPei应助宝宝巴士采纳,获得10
11秒前
张北海完成签到,获得积分10
11秒前
DY发布了新的文献求助10
12秒前
cxq完成签到,获得积分10
13秒前
研友_nv2krn发布了新的文献求助10
13秒前
克林发布了新的文献求助10
13秒前
13秒前
14秒前
duonicola完成签到,获得积分10
14秒前
14秒前
无花果应助苦逼的科研汪采纳,获得10
15秒前
1111发布了新的文献求助10
15秒前
Qiaoclin完成签到,获得积分10
17秒前
唐婷婷完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007