Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning

深度学习 计算机科学 人工智能 建筑 人工神经网络 卷积神经网络 多任务学习 网络体系结构 流量(计算机网络) 机器学习 任务(项目管理) 深层神经网络 循环神经网络 推论 工程类 计算机网络 系统工程 地理 考古
作者
Wenhao Huang,Guojie Song,Haikun Hong,Kun Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (5): 2191-2201 被引量:920
标识
DOI:10.1109/tits.2014.2311123
摘要

Traffic flow prediction is a fundamental problem in transportation modeling and management. Many existing approaches fail to provide favorable results due to being: 1) shallow in architecture; 2) hand engineered in features; and 3) separate in learning. In this paper we propose a deep architecture that consists of two parts, i.e., a deep belief network (DBN) at the bottom and a multitask regression layer at the top. A DBN is employed here for unsupervised feature learning. It can learn effective features for traffic flow prediction in an unsupervised fashion, which has been examined and found to be effective for many areas such as image and audio classification. To the best of our knowledge, this is the first paper that applies the deep learning approach to transportation research. To incorporate multitask learning (MTL) in our deep architecture, a multitask regression layer is used above the DBN for supervised prediction. We further investigate homogeneous MTL and heterogeneous MTL for traffic flow prediction. To take full advantage of weight sharing in our deep architecture, we propose a grouping method based on the weights in the top layer to make MTL more effective. Experiments on transportation data sets show good performance of our deep architecture. Abundant experiments show that our approach achieved close to 5% improvements over the state of the art. It is also presented that MTL can improve the generalization performance of shared tasks. These positive results demonstrate that deep learning and MTL are promising in transportation research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Elige采纳,获得10
刚刚
立躺顶真完成签到,获得积分10
1秒前
iperper完成签到,获得积分10
2秒前
orixero应助Backto1998采纳,获得10
2秒前
liushiyi完成签到,获得积分10
2秒前
香蕉觅云应助虚拟的惜筠采纳,获得10
3秒前
Jasper应助九点一定起采纳,获得10
3秒前
4秒前
4秒前
7秒前
8秒前
111发布了新的文献求助10
9秒前
9秒前
小高同学发布了新的文献求助10
9秒前
今后应助YGTRECE采纳,获得10
10秒前
11秒前
虾米吃螃蟹完成签到,获得积分10
12秒前
Lucas应助小高同学采纳,获得10
12秒前
这橘不甜发布了新的文献求助30
12秒前
14秒前
DD47发布了新的文献求助20
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
zmnzmnzmn应助科研通管家采纳,获得10
14秒前
哭泣灯泡完成签到,获得积分10
14秒前
斯文败类应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得30
15秒前
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得30
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778047
求助须知:如何正确求助?哪些是违规求助? 3323723
关于积分的说明 10215564
捐赠科研通 3038918
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798351
科研通“疑难数据库(出版商)”最低求助积分说明 758339