已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning

深度学习 计算机科学 人工智能 建筑 人工神经网络 卷积神经网络 多任务学习 网络体系结构 流量(计算机网络) 机器学习 任务(项目管理) 深层神经网络 循环神经网络 推论 工程类 计算机网络 系统工程 地理 考古
作者
Wenhao Huang,Guojie Song,Haikun Hong,Kun Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (5): 2191-2201 被引量:920
标识
DOI:10.1109/tits.2014.2311123
摘要

Traffic flow prediction is a fundamental problem in transportation modeling and management. Many existing approaches fail to provide favorable results due to being: 1) shallow in architecture; 2) hand engineered in features; and 3) separate in learning. In this paper we propose a deep architecture that consists of two parts, i.e., a deep belief network (DBN) at the bottom and a multitask regression layer at the top. A DBN is employed here for unsupervised feature learning. It can learn effective features for traffic flow prediction in an unsupervised fashion, which has been examined and found to be effective for many areas such as image and audio classification. To the best of our knowledge, this is the first paper that applies the deep learning approach to transportation research. To incorporate multitask learning (MTL) in our deep architecture, a multitask regression layer is used above the DBN for supervised prediction. We further investigate homogeneous MTL and heterogeneous MTL for traffic flow prediction. To take full advantage of weight sharing in our deep architecture, we propose a grouping method based on the weights in the top layer to make MTL more effective. Experiments on transportation data sets show good performance of our deep architecture. Abundant experiments show that our approach achieved close to 5% improvements over the state of the art. It is also presented that MTL can improve the generalization performance of shared tasks. These positive results demonstrate that deep learning and MTL are promising in transportation research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changping应助rorrons采纳,获得10
3秒前
Ava应助邱乐乐采纳,获得10
3秒前
小蘑菇应助Jy采纳,获得10
4秒前
morena应助智守奇安采纳,获得20
5秒前
5秒前
5秒前
科研通AI6应助Sylvia采纳,获得10
7秒前
9秒前
恩吉尔完成签到,获得积分10
10秒前
酋长家大母鹅完成签到,获得积分10
12秒前
大白发布了新的文献求助10
13秒前
nchudddd发布了新的文献求助10
16秒前
脑洞疼应助ccm采纳,获得10
17秒前
19秒前
Lucas应助妖精采纳,获得10
21秒前
辉月发布了新的文献求助10
21秒前
在水一方应助喜悦的秋双采纳,获得10
23秒前
23秒前
23秒前
24秒前
nicheng发布了新的文献求助10
24秒前
changping应助cmu1h采纳,获得10
25秒前
别当真完成签到 ,获得积分10
25秒前
26秒前
科研通AI5应助Sula37采纳,获得30
27秒前
28秒前
mkmimii发布了新的文献求助10
28秒前
29秒前
叶协琪发布了新的文献求助10
29秒前
辉月完成签到,获得积分10
32秒前
Feng5945完成签到 ,获得积分10
32秒前
euy发布了新的文献求助10
33秒前
33秒前
所所应助谦让的啤酒采纳,获得10
34秒前
35秒前
36秒前
37秒前
37秒前
老实的黑米完成签到 ,获得积分10
38秒前
瘦瘦小丸子完成签到,获得积分10
41秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209140
求助须知:如何正确求助?哪些是违规求助? 4386469
关于积分的说明 13660937
捐赠科研通 4245610
什么是DOI,文献DOI怎么找? 2329382
邀请新用户注册赠送积分活动 1327206
关于科研通互助平台的介绍 1279519