Position-aware deep multi-task learning for drug–drug interaction extraction

计算机科学 任务(项目管理) 人工智能 职位(财务) 药物与药物的相互作用 深度学习 机器学习 药品 药理学 医学 财务 经济 管理
作者
Deyu Zhou,Lei Miao,Yulan He
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:87: 1-8 被引量:80
标识
DOI:10.1016/j.artmed.2018.03.001
摘要

A drug-drug interaction (DDI) is a situation in which a drug affects the activity of another drug synergistically or antagonistically when being administered together. The information of DDIs is crucial for healthcare professionals to prevent adverse drug events. Although some known DDIs can be found in purposely-built databases such as DrugBank, most information is still buried in scientific publications. Therefore, automatically extracting DDIs from biomedical texts is sorely needed.In this paper, we propose a novel position-aware deep multi-task learning approach for extracting DDIs from biomedical texts. In particular, sentences are represented as a sequence of word embeddings and position embeddings. An attention-based bidirectional long short-term memory (BiLSTM) network is used to encode each sentence. The relative position information of words with the target drugs in text is combined with the hidden states of BiLSTM to generate the position-aware attention weights. Moreover, the tasks of predicting whether or not two drugs interact with each other and further distinguishing the types of interactions are learned jointly in multi-task learning framework.The proposed approach has been evaluated on the DDIExtraction challenge 2013 corpus and the results show that with the position-aware attention only, our proposed approach outperforms the state-of-the-art method by 0.99% for binary DDI classification, and with both position-aware attention and multi-task learning, our approach achieves a micro F-score of 72.99% on interaction type identification, outperforming the state-of-the-art approach by 1.51%, which demonstrates the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaka091完成签到,获得积分10
刚刚
李健应助逆风起笔采纳,获得10
1秒前
叽里咕噜完成签到,获得积分10
1秒前
快乐的秋翠完成签到,获得积分10
1秒前
murraya发布了新的文献求助10
1秒前
小马甲应助zhencheng采纳,获得10
2秒前
bwx完成签到,获得积分10
4秒前
wss完成签到,获得积分10
4秒前
4秒前
执着的导师应助Ellis采纳,获得30
4秒前
萌萌许完成签到,获得积分10
5秒前
5秒前
知行合一完成签到,获得积分10
5秒前
假装学霸完成签到 ,获得积分10
6秒前
天天快乐应助个性莺采纳,获得10
6秒前
逆风起笔完成签到,获得积分10
6秒前
Beyond完成签到,获得积分10
7秒前
开心的西瓜完成签到,获得积分10
7秒前
beizi完成签到,获得积分10
7秒前
阔达金鱼发布了新的文献求助10
8秒前
9秒前
rh完成签到,获得积分10
9秒前
小曾完成签到,获得积分10
10秒前
小白菜完成签到 ,获得积分10
10秒前
正直的语蝶完成签到,获得积分10
12秒前
mao应助雷锋采纳,获得30
12秒前
合适凡发布了新的文献求助10
13秒前
霸气老黑完成签到 ,获得积分10
13秒前
JiangY完成签到,获得积分10
14秒前
lll完成签到,获得积分10
14秒前
xiaoluoluo完成签到,获得积分10
14秒前
阿海的完成签到,获得积分10
15秒前
非对称转录完成签到,获得积分0
15秒前
认真奇异果完成签到,获得积分10
17秒前
青天鸟1989完成签到,获得积分10
17秒前
ppat5012完成签到 ,获得积分10
18秒前
合适凡完成签到,获得积分10
18秒前
faiting完成签到,获得积分10
18秒前
ru完成签到 ,获得积分10
18秒前
xzn1123完成签到,获得积分0
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3931173
求助须知:如何正确求助?哪些是违规求助? 3476124
关于积分的说明 10989408
捐赠科研通 3206361
什么是DOI,文献DOI怎么找? 1771956
邀请新用户注册赠送积分活动 859280
科研通“疑难数据库(出版商)”最低求助积分说明 797122