Deep learning based cone beam CT reconstruction framework using a cascaded neural network architecture (Conference Presentation)

介绍(产科) 计算机科学 建筑 人工智能 人工神经网络 深度学习 计算机视觉 艺术 医学 视觉艺术 放射科
作者
Yinsheng Li,Guang-Hong Chen
出处
期刊:Medical Imaging 2018: Physics of Medical Imaging 被引量:4
标识
DOI:10.1117/12.2293916
摘要

In this work, a novel cascaded neural network architecture was developed to perform cone beam CT image reconstruction using the deep learning method. The proposed architecture consists four individual stages: a manifold learning stage to perform projection data pre-processing, a convolutional neural network (CNN) stage to perform data filtration, a fully connected layer with sparse regularization to perform single-view backprojection, and a final fully connected layer with linear activation to generate the target image volume. In manifold learning stage, a novel feature combining technique was proposed to improve noise properties of the final reconstructed images. These 13-layer deep neural network work trained using extensive numerical phantom with noise contaminated projection data and ground truth image in a stage-by-stage pretraining stage. After pretraining with numerical phantom data, the cascaded neural network model was fine tuned using physical phantom data from a diagnostic MDCT scanner. After training, the trained neural network model was used to reconstruct low dose CT images for human subjects from a prospective low dose CT protocol. In these studies, it was found that the proposed cascaded neural network based deep learning method can (1) enable low dose CT reconstruction without noise streaks and with reduced noise amplitude; (2) well maintain reconstruction accuracy at reduced dose levels; and (3) unlike the currently available statistical model based image reconstruction (MBIR) methods, the proposed deep learning reconstruction method can well maintain the similar dose-normalized noise power spectrum (NPS) with that of the FBP reconstructed images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
nancylan应助LW采纳,获得10
刚刚
1秒前
yh发布了新的文献求助10
1秒前
2秒前
爆米花应助xiu-er采纳,获得10
2秒前
3秒前
3秒前
李茹关注了科研通微信公众号
3秒前
Hi完成签到,获得积分10
4秒前
共享精神应助刘祥采纳,获得10
4秒前
4秒前
4秒前
干净绿真发布了新的文献求助10
5秒前
开心千青发布了新的文献求助10
5秒前
情怀应助彩色的若南采纳,获得20
5秒前
6秒前
隐形曼青应助墨懿采纳,获得10
6秒前
weiwenzuo完成签到,获得积分10
7秒前
温柔的幻露完成签到,获得积分10
7秒前
田子廉发布了新的文献求助10
8秒前
落月铭完成签到,获得积分10
8秒前
xkhxh发布了新的文献求助10
8秒前
孝择发布了新的文献求助100
8秒前
9秒前
思源应助大力糜采纳,获得10
9秒前
hhhh完成签到,获得积分10
10秒前
10秒前
刘玲发布了新的文献求助10
11秒前
酷波er应助天边一阵风采纳,获得30
11秒前
tianmengkui完成签到,获得积分10
12秒前
落月铭发布了新的文献求助10
12秒前
Dragon完成签到,获得积分10
12秒前
12秒前
whs完成签到,获得积分20
13秒前
13秒前
mic发布了新的文献求助10
14秒前
14秒前
科研通AI6应助wulala采纳,获得10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342127
求助须知:如何正确求助?哪些是违规求助? 4478048
关于积分的说明 13938042
捐赠科研通 4374445
什么是DOI,文献DOI怎么找? 2403529
邀请新用户注册赠送积分活动 1396244
关于科研通互助平台的介绍 1368307