Phase Retrieval via Reweighted Amplitude Flow

初始化 算法 计算机科学 应用数学 数学 人工智能 程序设计语言
作者
Gang Wang,Georgios B. Giannakis,Yousef Saad,Jie Chen
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:62
标识
DOI:10.1109/tsp.2018.2818077
摘要

This paper deals with finding an n-dimensional solution x to a system of quadratic equations of the form y i = |〈a i , x〉| 2 for 1 ≤ i ≤ m, which is also known as the generalized phase retrieval problem. For this NP-hard problem, a novel approach is developed for minimizing the amplitude-based leastsquares empirical loss, which starts with a weighted maximal correlation initialization obtainable through a few power or Lanczos iterations, followed by successive refinements based on a sequence of iteratively reweighted gradient iterations. The two stages (initialization and gradient flow) distinguish themselves from prior contributions by the inclusion of a fresh (re)weighting regularization procedure. For certain random measurement models, the novel scheme is shown to be able to recover the true solution x in time proportional to reading the data {(a i ; y i )} 1 ≤i≤m. This holds with high probability and without extra assumption on the signal vector x to be recovered, provided that the number m of equations is some constant c > 0 times the number n of unknowns in the signal vector, namely m > cn. Empirically, the upshots of this contribution are: first, (almost) 100% perfect signal recovery in the high-dimensional (say n ≥ 2000) regime given only an information-theoretic limit number of noiseless equations, namely m = 2n - 1, in the real Gaussian case; and second, (nearly) optimal statistical accuracy in the presence of additive noise of bounded support. Finally, substantial numerical tests using both synthetic data and real images corroborate markedly improved recovery performance and computational efficiency of the novel scheme relative to the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细胞发布了新的文献求助10
刚刚
天天快乐应助负责半蕾采纳,获得10
1秒前
1秒前
1秒前
可爱的函函应助米酒采纳,获得30
1秒前
承影发布了新的文献求助30
1秒前
submarines完成签到,获得积分10
2秒前
魏戎儿发布了新的文献求助10
2秒前
Ab完成签到,获得积分20
2秒前
2秒前
NexusExplorer应助桀庚采纳,获得10
3秒前
4秒前
wanci应助校长采纳,获得10
5秒前
ding应助土壤ARGs采纳,获得30
5秒前
ttx发布了新的文献求助10
6秒前
ZhouYW应助summy采纳,获得10
6秒前
领导范儿应助summy采纳,获得10
6秒前
6秒前
llg发布了新的文献求助10
6秒前
快乐的乐巧完成签到,获得积分10
8秒前
8秒前
hullu发布了新的文献求助10
8秒前
BruceKKKK发布了新的文献求助10
9秒前
无奈完成签到,获得积分10
9秒前
fuhao完成签到,获得积分10
9秒前
辻渃完成签到,获得积分10
9秒前
北风完成签到 ,获得积分10
9秒前
Ava应助橘子海采纳,获得10
10秒前
yss完成签到,获得积分10
10秒前
11秒前
bkagyin应助yeyongchang_hit采纳,获得10
11秒前
11秒前
小浣熊完成签到 ,获得积分10
11秒前
小二郎应助小垃圾采纳,获得10
11秒前
516165165发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
lyfsci完成签到,获得积分20
13秒前
友好的牛排完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836