奥氮平
化学
CYP1A2
药理学
细胞色素P450
生物化学
新陈代谢
生物
医学
精神科
精神分裂症(面向对象编程)
作者
Barbara J. Ring,John T. Catlow,Thomas J. Lindsay,Todd A. Gillespie,Lorin Roskos,Benito J. Cerimele,S. P. Swanson,Mitchell A. Hamman,Steven Wrighton
标识
DOI:10.1016/s0022-3565(25)12326-4
摘要
The formation kinetics of 2-hydroxymethyl olanzapine (2-OH olanzapine), 4'-N-oxide olanzapine (N-O olanzapine) and 4'-N-desmethyl olanzapine (NdM olanzapine) were analyzed in vitro. Biphasic kinetics were observed for formation of 2-OH and NdM olanzapine. The high-affinity enzyme responsible for 2-OH olanzapine formation by two human liver samples exhibited an intrinsic clearance (CLint) of 0.2 microliter/min/mg. NdM olanzapine formation by two human liver samples exhibited a CLint of 1.0 microliter/min/mg for the high affinity enzyme. The formation of N-O olanzapine was linear up to 300 microM olanzapine, yielding a CLint of 0.32 to 1.70 microliters/min/mg. The formation of 7-hydroxy olanzapine (7-OH olanzapine) exhibited an apparent Km of 24.2 microM. The rates of 2-OH olanzapine formation correlated with CYP2D6 levels and activity, and it was formed to the greatest extent by cDNA-expressed CYP2D6. N-O olanzapine formation correlated with human liver flavin-containing monooxygenase (FMO3) levels and activity. NdM olanzapine and 7-OH olanzapine formation correlated with CYP1A2 catalytic activities and they were formed to the greatest extent by expressed CYP1A2. These results suggest that CYP1A2 catalyzes NdM olanzapine and 7-OH olanzapine formation, CYP2D6 catalyzes 2-OH olanzapine formation and FMO3 catalyzes N-O olanzapine formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI