亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Curv‐Net: Curvilinear structure segmentation network based on selective kernel and multi‐Bi‐ConvLSTM

曲线坐标 人工智能 分割 计算机科学 特征(语言学) 核(代数) 模式识别(心理学) 深度学习 图像分割 眼底(子宫) 计算机视觉 保险丝(电气) 数学 眼科 电气工程 组合数学 工程类 哲学 医学 语言学 几何学
作者
Yanlin He,Hui Sun,Yugen Yi,Wenhe Chen,Jun Kong,Caixia Zheng
出处
期刊:Medical Physics [Wiley]
卷期号:49 (5): 3144-3158 被引量:7
标识
DOI:10.1002/mp.15546
摘要

Accurately segmenting curvilinear structures, for example, retinal blood vessels or nerve fibers, in the medical image is essential to the clinical diagnosis of many diseases. Recently, deep learning has become a popular technology to deal with the image segmentation task, and it has obtained remarkable achievement. However, the existing methods still have many problems when segmenting the curvilinear structures in medical images, such as losing the details of curvilinear structures, producing many false-positive segmentation results. To mitigate these problems, we propose a novel end-to-end curvilinear structure segmentation network called Curv-Net.Curv-Net is an effective encoder-decoder architecture constructed based on selective kernel (SK) and multibidirectional convolutional LSTM (multi-Bi-ConvLSTM). To be specific, we first employ the SK module in the convolutional layer to adaptively extract the multi-scale features of the input image, and then we design a multi-Bi-ConvLSTM as the skip concatenation to fuse the information learned in the same stage and propagate the feature information from the deep stages to the shallow stages, which can enable the feature captured by Curv-Net to contain more detail information and high-level semantic information simultaneously to improve the segmentation performance.The effectiveness and reliability of our proposed Curv-Net are verified on three public datasets: two color fundus datasets (DRIVE and CHASE_DB1) and one corneal nerve fiber dataset (CCM-2). We calculate the accuracy (ACC), sensitivity (SE), specificity (SP), Dice similarity coefficient (Dice), and area under the receiver (AUC) for the DRIVE and CHASE_DB1 datasets. The ACC, SE, SP, Dice, and AUC of the DRIVE dataset are 0.9629, 0.8175, 0.9858, 0.8352, and 0.9810, respectively. For the CHASE_DB1 dataset, the values are 0.9810, 0.8564, 0.9899, 0.8143, and 0.9832, respectively. To validate the corneal nerve fiber segmentation performance of the proposed Curv-Net, we test it on the CCM-2 dataset and calculate Dice, SE, and false discovery rate (FDR) metrics. The Dice, SE, and FDR achieved by Curv-Net are 0.8114 ± 0.0062, 0.8903 ± 0.0113, and 0.2547 ± 0.0104, respectively.Curv-Net is evaluated on three public datasets. Extensive experimental results demonstrate that Curv-Net outperforms the other superior curvilinear structure segmentation methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
fabian完成签到,获得积分10
26秒前
27秒前
带点脑子读研求求你了完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
在水一方应助helloragdoll采纳,获得10
1分钟前
毛毛完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Icberg完成签到,获得积分10
2分钟前
2分钟前
cocopan发布了新的文献求助10
2分钟前
小二郎应助1412yz采纳,获得10
2分钟前
hh完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
cocopan发布了新的文献求助10
4分钟前
1412yz完成签到,获得积分20
4分钟前
4分钟前
1412yz发布了新的文献求助10
4分钟前
4分钟前
朗源Wu发布了新的文献求助10
4分钟前
朗源Wu完成签到,获得积分10
4分钟前
nannan完成签到 ,获得积分10
5分钟前
MiaMia应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
MiaMia应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
甜心椰奶莓莓完成签到 ,获得积分10
6分钟前
7分钟前
7分钟前
王思蒙完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450949