Ultra‐Stretchable and Fast Self‐Healing Ionic Hydrogel in Cryogenic Environments for Artificial Nerve Fiber

材料科学 自愈 纳米技术 纤维 机器人 计算机科学 复合材料 人工智能 医学 病理 替代医学
作者
Chan Wang,Ying Liu,Xuecheng Qu,Bojing Shi,Qiang Zheng,Xubo Lin,Shengyu Chao,Changyong Wang,Jinchuan Zhou,Sun Yu,Gengsheng Mao,Zhou Li
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (16): e2105416-e2105416 被引量:257
标识
DOI:10.1002/adma.202105416
摘要

Abstract Self‐healing materials behave with irreplaceable advantages in biomimetic intelligent robots (BIR) for avoiding or reducing safety hazards and economic losses from accidental damage during service. However, the self‐healing ability is unreservedly lost and even becomes rigid and fragile in the cryogenic environment where BIR are precisely needed. Here, the authors report a versatile ionic hydrogel with fast self‐healing ability, ultra‐stretchability, and stable conductivity, even at −80 °C. The hydrogel is systematically optimized to improve a hydrogen‐bonded network nanostructure, coordinated achieving a quick self‐healing ability within 10 min, large deformation tolerance of over 7000%, superior conductivity of 11.76 S cm −1 and anti‐freezing ability, which is difficult to obtain simultaneously. Such a hydrogel provides new opportunities for artificial electronic devices in harsh environments. As a prospective application, they fabricate an artificial nerve fiber by mimicking the structure and functions of the myelinated axon, exhibiting the property of fast and potential‐gated signal transmission. This artificial nerve fiber is integrated into a robot for demonstrating a real‐time high fidelity and high throughput information interaction under big deformation and cryogenic temperature. The hydrogel and bionic device will bring pioneering functions for robots and open a broad application scenario in extreme conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjl99676完成签到,获得积分10
1秒前
帅气善斓应助昵称11采纳,获得10
2秒前
BowieHuang应助昵称11采纳,获得10
2秒前
英俊的铭应助加油通采纳,获得10
2秒前
wuhoo完成签到,获得积分10
2秒前
玩命蛋挞完成签到,获得积分10
3秒前
卓莎发布了新的文献求助10
3秒前
ilmiss发布了新的文献求助10
4秒前
小马甲应助爱笑的珩采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
SciGPT应助专注的乐松采纳,获得10
6秒前
zzs发布了新的文献求助10
7秒前
迷路念真完成签到,获得积分20
7秒前
9秒前
芋泥完成签到 ,获得积分10
10秒前
12秒前
LUYAO1完成签到 ,获得积分10
13秒前
15秒前
16秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
糕糕发布了新的文献求助30
17秒前
寻风完成签到,获得积分10
18秒前
18秒前
Perrylin718发布了新的文献求助10
21秒前
NexusExplorer应助Xinger采纳,获得10
21秒前
21秒前
21秒前
闪电侠发布了新的文献求助10
22秒前
22秒前
wanci应助小洋采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
852应助奶冻采纳,获得10
23秒前
故酒应助眯眯眼的小懒猪采纳,获得10
24秒前
yu发布了新的文献求助10
25秒前
25秒前
cc完成签到 ,获得积分10
25秒前
25秒前
26秒前
英姑应助优美紫槐采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711883
求助须知:如何正确求助?哪些是违规求助? 5206296
关于积分的说明 15265590
捐赠科研通 4864003
什么是DOI,文献DOI怎么找? 2611125
邀请新用户注册赠送积分活动 1561399
关于科研通互助平台的介绍 1518729