Artificial confocal microscopy for deep label-free imaging

光学切片 共焦 共焦显微镜 显微镜 光漂白 光学 显微镜 材料科学 扫描共焦电子显微镜 人工智能 计算机科学 荧光 物理
作者
Xi Chen,Mikhail E. Kandel,Shenghua He,Chenfei Hu,Young Jae Lee,Kathryn M. Sullivan,Gregory Tracy,Hee Jung Chung,Hyun Joon Kong,Mark A. Anastasio,Gabriel Popescu
出处
期刊:Nature Photonics [Springer Nature]
卷期号:17 (3): 250-258 被引量:15
标识
DOI:10.1038/s41566-022-01140-6
摘要

Widefield microscopy of optically thick specimens typically features reduced contrast due to "spatial crosstalk", in which the signal at each point in the field of view is the result of a superposition from neighbouring points that are simultaneously illuminated. In 1955, Marvin Minsky proposed confocal microscopy as a solution to this problem. Today, laser scanning confocal fluorescence microscopy is broadly used due to its high depth resolution and sensitivity, but comes at the price of photobleaching, chemical, and photo-toxicity. Here, we present artificial confocal microscopy (ACM) to achieve confocal-level depth sectioning, sensitivity, and chemical specificity, on unlabeled specimens, nondestructively. We equipped a commercial laser scanning confocal instrument with a quantitative phase imaging module, which provides optical path-length maps of the specimen in the same field of view as the fluorescence channel. Using pairs of phase and fluorescence images, we trained a convolution neural network to translate the former into the latter. The training to infer a new tag is very practical as the input and ground truth data are intrinsically registered, and the data acquisition is automated. The ACM images present significantly stronger depth sectioning than the input (phase) images, enabling us to recover confocal-like tomographic volumes of microspheres, hippocampal neurons in culture, and 3D liver cancer spheroids. By training on nucleus-specific tags, ACM allows for segmenting individual nuclei within dense spheroids for both cell counting and volume measurements. In summary, ACM can provide quantitative, dynamic data, nondestructively from thick samples, while chemical specificity is recovered computationally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一路向阳完成签到,获得积分10
1秒前
viahit发布了新的文献求助10
1秒前
Hello应助jingjing采纳,获得10
1秒前
科研通AI2S应助liv采纳,获得10
1秒前
Chai发布了新的文献求助10
2秒前
3秒前
欧气满满发布了新的文献求助10
4秒前
人间绝酷发布了新的文献求助10
4秒前
5秒前
NexusExplorer应助姁姁采纳,获得10
5秒前
一二应助黑色的白鲸采纳,获得10
6秒前
6秒前
6秒前
H123应助qq采纳,获得30
6秒前
E0702发布了新的文献求助30
6秒前
Lithium应助wwww采纳,获得10
6秒前
大模型应助liuxiaoliu采纳,获得10
6秒前
9秒前
11秒前
秋雪瑶应助于生有你采纳,获得10
11秒前
明亮思菱完成签到,获得积分10
11秒前
12秒前
丘比特应助呆萌的心情采纳,获得10
12秒前
慕青应助E0702采纳,获得30
12秒前
zhongbo完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
lee发布了新的文献求助10
17秒前
Hu发布了新的文献求助10
17秒前
称心映寒完成签到 ,获得积分10
17秒前
17秒前
KK发布了新的文献求助10
18秒前
鲤鱼梦柳发布了新的文献求助10
18秒前
三真发布了新的文献求助10
20秒前
buyi完成签到,获得积分10
20秒前
姁姁发布了新的文献求助10
20秒前
Chai完成签到,获得积分10
21秒前
橙子完成签到,获得积分10
21秒前
高分求助中
Thermodynamic data for steelmaking 3000
Teaching Social and Emotional Learning in Physical Education 900
Institution Building, Organisational Restructuring and Everyday Negotiations in Uganda's Roads Sector 500
Cardiology: Board and Certification Review 400
[Lambert-Eaton syndrome without calcium channel autoantibodies] 300
Transformerboard III 300
R语言临床预测模型实战 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2359660
求助须知:如何正确求助?哪些是违规求助? 2066818
关于积分的说明 5162456
捐赠科研通 1795577
什么是DOI,文献DOI怎么找? 896893
版权声明 557630
科研通“疑难数据库(出版商)”最低求助积分说明 478753