Artificial confocal microscopy for deep label-free imaging

光学切片 共焦 共焦显微镜 显微镜 光漂白 光学 显微镜 材料科学 扫描共焦电子显微镜 激光扫描 人工智能 计算机科学 荧光 激光器 物理
作者
Xi Chen,Mikhail E. Kandel,Shenghua He,Chenfei Hu,Young Jae Lee,Kathryn M. Sullivan,Gregory Tracy,Hee Jung Chung,Hyun Joon Kong,Mark A. Anastasio,Gabriel Popescu
出处
期刊:Nature Photonics [Nature Portfolio]
卷期号:17 (3): 250-258 被引量:41
标识
DOI:10.1038/s41566-022-01140-6
摘要

Widefield microscopy of optically thick specimens typically features reduced contrast due to "spatial crosstalk", in which the signal at each point in the field of view is the result of a superposition from neighbouring points that are simultaneously illuminated. In 1955, Marvin Minsky proposed confocal microscopy as a solution to this problem. Today, laser scanning confocal fluorescence microscopy is broadly used due to its high depth resolution and sensitivity, but comes at the price of photobleaching, chemical, and photo-toxicity. Here, we present artificial confocal microscopy (ACM) to achieve confocal-level depth sectioning, sensitivity, and chemical specificity, on unlabeled specimens, nondestructively. We equipped a commercial laser scanning confocal instrument with a quantitative phase imaging module, which provides optical path-length maps of the specimen in the same field of view as the fluorescence channel. Using pairs of phase and fluorescence images, we trained a convolution neural network to translate the former into the latter. The training to infer a new tag is very practical as the input and ground truth data are intrinsically registered, and the data acquisition is automated. The ACM images present significantly stronger depth sectioning than the input (phase) images, enabling us to recover confocal-like tomographic volumes of microspheres, hippocampal neurons in culture, and 3D liver cancer spheroids. By training on nucleus-specific tags, ACM allows for segmenting individual nuclei within dense spheroids for both cell counting and volume measurements. In summary, ACM can provide quantitative, dynamic data, nondestructively from thick samples, while chemical specificity is recovered computationally.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dilli完成签到 ,获得积分10
3秒前
3秒前
5秒前
happyou发布了新的文献求助10
5秒前
SciGPT应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
dox应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
冰魂应助科研通管家采纳,获得20
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
8秒前
传奇3应助harri采纳,获得10
8秒前
9秒前
goldNAN发布了新的文献求助10
11秒前
12秒前
ohh发布了新的文献求助10
13秒前
Lucas应助前世今生采纳,获得10
13秒前
机智访琴发布了新的文献求助10
14秒前
嬛嬛完成签到 ,获得积分10
14秒前
帕芙芙完成签到,获得积分10
14秒前
欣喜的高烽完成签到 ,获得积分10
16秒前
24秒前
大个应助嬛嬛采纳,获得10
25秒前
钱超完成签到,获得积分10
25秒前
25秒前
闪闪的妙竹完成签到 ,获得积分10
26秒前
shanjiao1324完成签到,获得积分10
29秒前
calm发布了新的文献求助10
30秒前
30秒前
Rookie完成签到 ,获得积分10
31秒前
Lucas应助不奇采纳,获得10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Mortality and adverse events of special interest with intravenous belimumab for adults with active, autoantibody-positive systemic lupus erythematosus (BASE): a multicentre, double-blind, randomised, placebo-controlled, phase 4 trial 390
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838395
求助须知:如何正确求助?哪些是违规求助? 3380695
关于积分的说明 10515576
捐赠科研通 3100341
什么是DOI,文献DOI怎么找? 1707439
邀请新用户注册赠送积分活动 821718
科研通“疑难数据库(出版商)”最低求助积分说明 772907