氰化
选择性
催化作用
热解
碳纤维
化学
氧化磷酸化
氨
有机化学
材料科学
氰化物
复合数
生物化学
复合材料
作者
Manli Hua,Jinliang Song,Xin Huang,Huizhen Liu,Honglei Fan,Weitao Wang,Zhen‐Hong He,Zhao‐Tie Liu,Buxing Han
标识
DOI:10.1002/ange.202107996
摘要
Abstract Oxidative cyanation of aldehydes provides a promising strategy for the cyanide‐free synthesis of organic nitriles. Design of robust and cost‐effective catalysts is the key for this route. Herein, we designed a series of Se,S,N‐ tri ‐doped carbon nanosheets with a hierarchical porous structure (denoted as Se,S,N‐CNs‐ x , x represents the pyrolysis temperature). It was found that the obtained Se,S,N‐CNs‐ 1000 was very selective and efficient for oxidative cyanation of various aldehydes including those containing other oxidizable groups into the corresponding nitriles using ammonia as the nitrogen resource below 100 °C. Detailed investigations revealed that the excellent performance of Se,S,N‐CNs‐ 1000 originated mainly from the graphitic‐N species with lower electron density and synergistic effect between the Se, S, N, and C in the catalyst. Besides, the hierarchically porous structure could also promote the reaction. Notably, the unique feature of this metal‐free catalyst is that it tolerated other oxidizable groups, and showed no activity on further reaction of the products, thereby resulting in high selectivity. As far as we know, this is the first work for the synthesis of nitriles via oxidative cyanation of aldehydes over heterogeneous metal‐free catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI