清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Towards a Multi-View Attentive Matching for Personalized Expert Finding

计算机科学 相关性(法律) 编码器 匹配(统计) 钥匙(锁) 人工智能 答疑 情报检索 人机交互 统计 数学 计算机安全 政治学 法学 操作系统
作者
Qiyao Peng,Hongtao Liu,Yinghui Wang,Hongyan Xu,Pengfei Jiao,Minglai Shao,Wenjun Wang
标识
DOI:10.1145/3485447.3512086
摘要

In Community Question Answering (CQA) websites, expert finding aims at seeking suitable experts to answer questions. The key is to explore the inherent relevance based on the representations of questions and experts. Existing methods usually learn these features from single view information (e.g., question title), which would be not insufficient to fully learn their representations. In this paper, we propose a personalized expert finding method with a multi-view attentive matching mechanism. We design three modules under the multi-view paradigm, including a question encoder, an intra-view encoder, and an inter-view encoder, which aims to comprehend the comprehensive relationships between experts and questions. In the question encoder, we learn the multi-view question features from its title, body and tag views respectively. In the intra-view encoder, we design an interactive attention network to capture the view-specific relevance between the target question and the historical answered questions of experts for all different views. Furthermore, in the inter-view encoder we employ a personalized attention network to aggregate different view information to learn expert/question representations. In this way, the match of the expert and question could be fully captured from the multi-view information via the intra- and inter-view mechanisms. Experimental results on six datasets demonstrate that the proposed method could achieve better performance than existing state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
空中风也完成签到 ,获得积分10
30秒前
淡淡醉波wuliao完成签到 ,获得积分10
43秒前
斯文败类应助sommmy采纳,获得10
52秒前
Jasper应助科研通管家采纳,获得10
55秒前
1分钟前
1分钟前
sommmy关注了科研通微信公众号
1分钟前
1分钟前
sommmy发布了新的文献求助10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
2分钟前
光合作用完成签到,获得积分10
2分钟前
Demi_Ming完成签到,获得积分10
2分钟前
无聊的翠芙完成签到,获得积分10
2分钟前
Lucas应助坦率的尔竹采纳,获得10
3分钟前
3分钟前
噗噗蝶pd发布了新的文献求助10
3分钟前
3分钟前
噗噗蝶pd完成签到,获得积分20
3分钟前
gugugu完成签到,获得积分20
4分钟前
4分钟前
Keylor完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
sllytn应助科研通管家采纳,获得20
4分钟前
孙燕应助dustwuw采纳,获得10
5分钟前
宇文非笑完成签到 ,获得积分0
5分钟前
兜兜齿皮皮关注了科研通微信公众号
5分钟前
大方的笑萍完成签到 ,获得积分10
5分钟前
5分钟前
欢呼的茗茗完成签到 ,获得积分10
5分钟前
百里博涛发布了新的文献求助10
5分钟前
6分钟前
孙燕应助范范采纳,获得10
6分钟前
6分钟前
6分钟前
Mia发布了新的文献求助10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376298
关于积分的说明 10492573
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771859