Wearable Iontronic FMG for Classification of Muscular Locomotion

可穿戴计算机 计算机科学 人工智能 支持向量机 灵敏度(控制系统) 机器人学 接口(物质) 压力传感器 信号(编程语言) 压力中心(流体力学) 模拟 机器人 模式识别(心理学) 计算机视觉 嵌入式系统 工程类 机械工程 程序设计语言 气泡 电子工程 最大气泡压力法 并行计算 空气动力学 航空航天工程
作者
Peikai Zou,Yaxin Wang,Huaxuan Cai,Tao Peng,Tingrui Pan,Ruya Li,Yubo Fan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (7): 2854-2863 被引量:9
标识
DOI:10.1109/jbhi.2022.3173968
摘要

Human motion recognition with high accuracy and fast response speed has long been considered an essential component in human-machine interactive activities such as assistive robotics, medical prosthesis, and wearable electronics. The force myography (FMG) signal has been the focus of much investigation in the search for a reliable and efficient muscular locomotion recognition system. However, the effect of the sensing system on FMG-based locomotion classification accuracy has yet to be understood. This study proposed a novel FMG sensing strategy for human lower limb locomotion classification based on flexible supercapacitive iontronic sensors. Benefiting from the ultrahigh sensitivity (up to 1 nF/mmHg) and low activation pressure (less than 5 mmHg) of the supercapacitive iontronic pressure sensor, FMG signal can be acquired accurately from 5 iontronic sensors strapped to the thigh. In the experiment with 12 subjects, the real-time classification strategy based on sliding window and SVM model gave an average locomotion classification accuracy of 99% for seven categories, including sitting, standing, walking on level ground, ramp ascent, ramp descent, stair ascent, stair descent. Compared with traditional FSR sensors, the result showed that iontronic sensors improved the classification accuracy by up to 10 percentage points in the case of short time window. The implementation of the high sensitivity flexible iontronic sensors in the wearable system brings a valuable tool for detecting small human body pressure signals and has great potential to improve the performance of the human-machine interface in rehabilitation and medical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助steleegee采纳,获得10
1秒前
彭于晏应助grosfgcrd采纳,获得10
2秒前
tyh发布了新的文献求助10
2秒前
沈矞完成签到,获得积分10
3秒前
nini完成签到,获得积分10
5秒前
read完成签到,获得积分10
5秒前
李健应助黑衣人的秘密采纳,获得10
6秒前
8秒前
科研通AI5应助崔玉婷采纳,获得30
9秒前
铂铑钯钌完成签到,获得积分10
12秒前
在水一方应助MMZMJY采纳,获得10
12秒前
研友_LBKqyn发布了新的文献求助10
14秒前
14秒前
17秒前
慕青应助科研通管家采纳,获得10
18秒前
aprilvanilla应助科研通管家采纳,获得10
18秒前
shanage应助科研通管家采纳,获得10
18秒前
冰魂应助科研通管家采纳,获得20
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
19秒前
田様应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
19秒前
科研通AI5应助ztt采纳,获得10
20秒前
TheaGao完成签到 ,获得积分10
20秒前
qiao应助雪sung采纳,获得10
20秒前
steleegee发布了新的文献求助10
23秒前
kc135完成签到,获得积分10
23秒前
23秒前
飘逸初夏完成签到,获得积分10
23秒前
小么小完成签到,获得积分10
24秒前
科研通AI5应助朝阳CAAS采纳,获得10
24秒前
naplzp完成签到 ,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776338
求助须知:如何正确求助?哪些是违规求助? 3321773
关于积分的说明 10207718
捐赠科研通 3037092
什么是DOI,文献DOI怎么找? 1666533
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870