Challenges and Opportunities for Improved Drug–Drug Interaction Predictions for Renal OCT2 and MATE1/2‐K Transporters

背景(考古学) 运输机 药理学 药品 药物与药物的相互作用 体外 计算生物学 医学 化学 生物 生物化学 古生物学 基因
作者
Srinivasan Krishnan,Diane Ramsden,Douglas Ferguson,Simone H. Stahl,Joanne Wang,Dermot F. McGinnity,Niresh Hariparsad
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:112 (3): 562-572 被引量:16
标识
DOI:10.1002/cpt.2666
摘要

Transporters contribute to renal elimination of drugs; therefore drug disposition can be impacted if transporters are inhibited by comedicant drugs. Regulatory agencies have provided guidelines to assess potential drug-drug interaction (DDI) risk for renal organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 and 2-K (MATE1/2-K) transporters. Despite this, there are challenges with translating in vitro data using currently available tools to obtain a quantitative assessment of DDI risk in the clinic. Given the high number of drugs and new molecular entities showing in vitro inhibition toward OCT2 and/or MATE1/2-K and the lack of translation to clinically significant effects, it is reasonable to question whether the current in vitro assay design and modeling practice has led to unnecessary clinical evaluation. The aim of this review is to assess and discuss available in vitro and clinical data along with prediction models intended to provide clinical context of risk, including static models proposed by regulatory agencies and physiologically-based pharmacokinetic models, in order to identify best practices and areas of future opportunity. This analysis highlights that different in vitro assay designs, including substrate and cell systems used, strongly influence the derived concentration of drug producing 50% inhibition values and contribute to high variability observed across laboratories. Furthermore, the lack of sensitive index substrates coupled with specific inhibitors for individual transporters necessitates the use of complex models to evaluate clinical DDI risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢小盟应助光亮的曼青采纳,获得10
2秒前
2秒前
诗和远方完成签到,获得积分20
4秒前
失眠夏山完成签到,获得积分10
4秒前
甜甜甜完成签到 ,获得积分10
4秒前
ww完成签到,获得积分10
5秒前
游元稔发布了新的文献求助10
8秒前
机灵安白完成签到,获得积分10
8秒前
8秒前
HL完成签到,获得积分10
8秒前
周诗琪发布了新的文献求助10
10秒前
11秒前
SciGPT应助梁海萍采纳,获得10
13秒前
Dr_Fang发布了新的文献求助10
13秒前
淡淡的向雁完成签到,获得积分10
14秒前
赘婿应助Timber采纳,获得30
14秒前
孙燕应助科研通管家采纳,获得10
19秒前
孙燕应助科研通管家采纳,获得10
19秒前
bkagyin应助科研通管家采纳,获得10
19秒前
打卡下班应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
20秒前
桐桐应助科研通管家采纳,获得30
20秒前
打卡下班应助科研通管家采纳,获得10
20秒前
孙燕应助科研通管家采纳,获得10
20秒前
打卡下班应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
22秒前
23秒前
Dr_Fang完成签到,获得积分10
25秒前
迷人的高烽完成签到,获得积分20
25秒前
平淡的中心完成签到,获得积分10
26秒前
盼不热夏完成签到,获得积分10
26秒前
小夏发布了新的文献求助10
28秒前
活力的小猫咪完成签到 ,获得积分10
29秒前
研友_VZG7GZ应助Issac01采纳,获得10
31秒前
32秒前
易落完成签到,获得积分10
32秒前
montecount完成签到,获得积分10
33秒前
fff完成签到 ,获得积分10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126291
求助须知:如何正确求助?哪些是违规求助? 3663886
关于积分的说明 11593318
捐赠科研通 3363474
什么是DOI,文献DOI怎么找? 1848222
邀请新用户注册赠送积分活动 912232
科研通“疑难数据库(出版商)”最低求助积分说明 827947