Flexible battery state of health and state of charge estimation using partial charging data and deep learning

电池(电) 荷电状态 灵活性(工程) 健康状况 国家(计算机科学) 计算机科学 估计 电池容量 人工神经网络 卷积神经网络 均方误差 实时计算 算法 人工智能 工程类 数学 统计 功率(物理) 系统工程 物理 量子力学
作者
Jinpeng Tian,Rui Xiong,Weixiang Shen,Jiahuan Lu,Fengchun Sun
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:51: 372-381 被引量:155
标识
DOI:10.1016/j.ensm.2022.06.053
摘要

Accurately monitoring battery states over battery life plays a central role in building intelligent battery management systems. This study proposes a flexible method using only short pieces of charging data to estimate both maximum and remaining capacities to simultaneously address the state of health and state of charge estimation problems. Different from conventional studies based on specific operating data to estimate one state, the proposed method is based on a convolutional neural network that only requires short-term charging data to estimate two states. The proposed method is first validated based on the degradation data of eight 0.74 Ah batteries. We show that the maximum and remaining capacities can be accurately estimated using arbitrary pieces of 1 C charging data collected within 400 s over battery life, and the root mean square error is lower than 12.68 mAh. The influence of the input data length and different loss weights of the two states is investigated to demonstrate the high flexibility of the proposed method. Interestingly, it is observed that the simultaneous estimation of two states achieves higher accuracy than individual state estimation. Further validations on other two types of batteries reveal that the proposed method can ensure reliable estimation in the cases of different battery chemistries and different working conditions. Our method offers a flexible and easy-to-implement approach to achieving an accurate estimation of multiple states over battery life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丫丫完成签到 ,获得积分10
1秒前
2秒前
zhuazhua完成签到 ,获得积分10
3秒前
科研通AI5应助zdx12324采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
zgt01应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
Bink完成签到 ,获得积分10
7秒前
跨越山海的热爱完成签到 ,获得积分10
7秒前
guibuzi完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助虚幻大象采纳,获得10
7秒前
8秒前
香蕉觅云应助xsy采纳,获得10
8秒前
dong发布了新的文献求助10
8秒前
酷波er应助guibuzi采纳,获得10
10秒前
xia完成签到,获得积分10
10秒前
10秒前
zz完成签到,获得积分10
12秒前
12秒前
Hohowinnie发布了新的文献求助10
12秒前
lihan含完成签到 ,获得积分10
12秒前
Owen应助TheWitness采纳,获得10
12秒前
13秒前
科研通AI5应助小钱钱采纳,获得10
14秒前
14秒前
牙膏完成签到 ,获得积分10
14秒前
科研通AI2S应助dong采纳,获得10
14秒前
胡周瑜发布了新的文献求助10
15秒前
15秒前
坚强觅珍完成签到 ,获得积分10
17秒前
19秒前
Orange应助文安采纳,获得10
20秒前
20秒前
小徐完成签到,获得积分10
20秒前
20秒前
尛瞐慶成发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789592
求助须知:如何正确求助?哪些是违规求助? 3334534
关于积分的说明 10270460
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761