High-throughput property-driven generative design of functional organic molecules

计算机科学 生成语法 吞吐量 财产(哲学) 人工智能 有机分子 分子 化学 电信 认识论 哲学 有机化学 无线
作者
Julia Westermayr,Joe Gilkes,Rhyan Barrett,Reinhard J. Maurer
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2207.01476
摘要

The design of molecules and materials with tailored properties is challenging, as candidate molecules must satisfy multiple competing requirements that are often difficult to measure or compute. While molecular structures, produced through generative deep learning, will satisfy those patterns, they often only possess specific target properties by chance and not by design, which makes molecular discovery via this route inefficient. In this work, we predict molecules with (pareto)-optimal properties by combining a generative deep learning model that predicts three dimensional conformations of molecules with a supervised deep learning model that takes these as inputs and predicts their electronic structure. Optimization of (multiple) molecular properties is achieved by screening newly generated molecules for desirable electronic properties and reusing hit molecules to retrain the generative model with a bias. The approach is demonstrated to find optimal molecules for organic electronics applications. Our method is generally applicable and eliminates the need for quantum chemical calculations during predictions, making it suitable for high-throughput screening in materials and catalyst design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗷呜小兔发布了新的文献求助10
刚刚
dzy发布了新的文献求助30
1秒前
niaaaa发布了新的文献求助10
1秒前
FashionBoy应助YZzzJ采纳,获得10
1秒前
芳芳完成签到,获得积分10
1秒前
充电宝应助ma化疼没木采纳,获得10
1秒前
雨落发布了新的文献求助10
2秒前
xmyang完成签到,获得积分10
2秒前
2秒前
过昭关完成签到,获得积分10
3秒前
Hello应助妩媚的语蕊采纳,获得10
3秒前
所所应助儒雅怀蕾采纳,获得10
3秒前
活泼啤酒发布了新的文献求助10
4秒前
选民很头疼完成签到,获得积分10
4秒前
大个应助hxyang采纳,获得10
4秒前
4秒前
思源应助Ancoes采纳,获得10
4秒前
seekingalone应助phw1采纳,获得10
5秒前
星辰大海应助沁晏采纳,获得10
5秒前
5秒前
上官若男应助ww采纳,获得10
5秒前
6秒前
6秒前
6秒前
dzy完成签到,获得积分20
7秒前
mingge发布了新的文献求助10
8秒前
8秒前
8秒前
xtt发布了新的文献求助10
9秒前
Luffa完成签到,获得积分10
10秒前
Nisha完成签到,获得积分10
10秒前
沐金秋完成签到,获得积分10
10秒前
10秒前
11秒前
坚定茉莉完成签到,获得积分10
11秒前
FashionBoy应助D调的华丽采纳,获得10
11秒前
夏侯夏侯完成签到 ,获得积分10
11秒前
Heidi完成签到,获得积分10
12秒前
一步一个脚印完成签到,获得积分10
13秒前
微风发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3938356
求助须知:如何正确求助?哪些是违规求助? 3483983
关于积分的说明 11026396
捐赠科研通 3213982
什么是DOI,文献DOI怎么找? 1776331
邀请新用户注册赠送积分活动 862529
科研通“疑难数据库(出版商)”最低求助积分说明 798507