FedSeC: a Robust Differential Private Federated Learning Framework in Heterogeneous Networks

差别隐私 计算机科学 联合学习 趋同(经济学) 分布式学习 人工智能 噪音(视频) 机器学习 信息隐私 方案(数学) 激励 分布式计算 数据挖掘 计算机安全 心理学 教育学 数学分析 数学 经济 图像(数学) 微观经济学 经济增长
作者
Zhipeng Gao,Yingwen Duan,Yang Yang,Lanlan Rui,Zhao Chen
标识
DOI:10.1109/wcnc51071.2022.9771929
摘要

Federated learning (FL) is considered to be a promising paradigm to solve data privacy disclosure in large-scale machine learning. To further enhance the privacy protection of federated learning, prior works incorporate the differentially private data perturbation into the federated system. But it is not feasible given the impairment of the model from noise, as adding Gaussian noise to achieve differential privacy (DP) deteriorates the accuracy of the model. In particular, the assumption that the sophisticated system is homogeneous is not realistic for real scenarios. Heterogeneous networks exacerbate noise disruptions. In this paper, we present FedSeC, a novel differential private federated learning (DP-FL) framework which operates with robust convergence and high-accuracy while achieving adequate privacy protection. FedSeC improves upon naive combinations of federated learning and differential privacy approaches with an updates-based optimization of relative-staleness and semi-synchronous approach for fast convergence in heterogeneous networks. Moreover, we propose a valid client selection scheme to trade-off fair resource allocation and discriminatory incentives. Through extensive experimental validation of our method in three different heterogeneities, we show that FedSeC outperforms the previous state-of-the-art method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助B612小行星采纳,获得10
刚刚
blackddl应助muderder采纳,获得10
刚刚
1秒前
LLT发布了新的文献求助10
1秒前
科研通AI6应助Ccccc采纳,获得10
1秒前
Stella应助slayersqin采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得30
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
小透明应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得30
1秒前
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
Hanoi347应助科研通管家采纳,获得10
1秒前
Verity应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得30
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
小透明应助科研通管家采纳,获得30
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
Dean应助科研通管家采纳,获得40
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
小透明应助科研通管家采纳,获得30
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
可爱的函函应助突突leolo采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
uiuu完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
赵yy应助科研通管家采纳,获得10
3秒前
小透明应助科研通管家采纳,获得10
3秒前
xiaxia应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671