Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization

分割 人工智能 特征(语言学) 计算机科学 水准点(测量) 阈值 射线照相术 2019年冠状病毒病(COVID-19) 图像分割 过程(计算) 计算机视觉 模式识别(心理学) 噪音(视频) 医学 图像(数学) 放射科 地理 病理 哲学 语言学 疾病 大地测量学 传染病(医学专业) 操作系统
作者
Hang Su,Dong Zhao,Hela Elmannai,Ali Asghar Heidari,Sami Bourouis,Zongda Wu,Zhennao Cai,Wenyong Gui,Mayun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:146: 105618-105618 被引量:85
标识
DOI:10.1016/j.compbiomed.2022.105618
摘要

COVID-19 is currently raging worldwide, with more patients being diagnosed every day. It usually is diagnosed by examining pathological photographs of the patient's lungs. There is a lot of detailed and essential information on chest radiographs, but manual processing is not as efficient or accurate. As a result, how efficiently analyzing and processing chest radiography of COVID-19 patients is an important research direction to promote COVID-19 diagnosis. To improve the processing efficiency of COVID-19 chest films, a multilevel thresholding image segmentation (MTIS) method based on an enhanced multiverse optimizer (CCMVO) is proposed. CCMVO is improved from the original Multi-Verse Optimizer by introducing horizontal and vertical search mechanisms. It has a more assertive global search ability and can jump out of the local optimum in optimization. The CCMVO-based MTIS method can obtain higher quality segmentation results than HHO, SCA, and other forms and is less prone to stagnation during the segmentation process. To verify the performance of the proposed CCMVO algorithm, CCMVO is first compared with DE, MVO, and other algorithms by 30 benchmark functions; then, the proposed CCMVO is applied to image segmentation of COVID-19 chest radiography; finally, this paper verifies that the combination of MTIS and CCMVO is very successful with good segmentation results by using the Feature Similarity Index (FSIM), the Peak Signal to Noise Ratio (PSNR), and the Structural Similarity Index (SSIM). Therefore, this research can provide an effective segmentation method for a medical organization to process COVID-19 chest radiography and then help doctors diagnose coronavirus pneumonia (COVID-19).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权千万发布了新的文献求助10
1秒前
3秒前
meng完成签到,获得积分10
3秒前
乐乐应助陈敏采纳,获得10
6秒前
Junsir完成签到,获得积分10
7秒前
英俊的铭应助万物更始采纳,获得10
8秒前
神勇契完成签到,获得积分20
9秒前
小小果完成签到,获得积分20
10秒前
科研通AI5应助yoyo采纳,获得10
12秒前
13秒前
小郭完成签到,获得积分20
17秒前
小小果发布了新的文献求助10
18秒前
薛厌完成签到,获得积分10
18秒前
爱吃巧乐兹的猹完成签到,获得积分10
19秒前
陈敏发布了新的文献求助10
20秒前
20秒前
niulugai完成签到,获得积分10
21秒前
神勇契发布了新的文献求助10
23秒前
23秒前
24秒前
25秒前
虚心千凡发布了新的文献求助10
28秒前
小熊完成签到,获得积分10
28秒前
曹年跃发布了新的文献求助10
29秒前
陈敏完成签到,获得积分10
30秒前
科研通AI5应助zhengmiao采纳,获得10
31秒前
WDD完成签到,获得积分10
32秒前
小熊发布了新的文献求助10
32秒前
33秒前
33秒前
ste56完成签到,获得积分10
34秒前
牟翎完成签到,获得积分10
34秒前
人间草木完成签到,获得积分10
36秒前
ljj301发布了新的文献求助30
38秒前
Suki给Suki的求助进行了留言
38秒前
guilin发布了新的文献求助10
40秒前
曹年跃完成签到,获得积分10
40秒前
42秒前
humorr完成签到,获得积分10
43秒前
爆米花完成签到,获得积分10
44秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331224
关于积分的说明 10250683
捐赠科研通 3046706
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801055
科研通“疑难数据库(出版商)”最低求助积分说明 759979