HGNN+: General Hypergraph Neural Networks

超图 计算机科学 理论计算机科学 图形 数据类型 人工智能 数学 离散数学 程序设计语言
作者
Yue Gao,Yifan Feng,Shuyi Ji,Rongrong Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (3): 3181-3199 被引量:156
标识
DOI:10.1109/tpami.2022.3182052
摘要

Graph Neural Networks have attracted increasing attention in recent years. However, existing GNN frameworks are deployed based upon simple graphs, which limits their applications in dealing with complex data correlation of multi-modal/multi-type data in practice. A few hypergraph-based methods have recently been proposed to address the problem of multi-modal/multi-type data correlation by directly concatenating the hypergraphs constructed from each single individual modality/type, which is difficult to learn an adaptive weight for each modality/type. In this paper, we extend the original conference version HGNN, and introduce a general high-order multi-modal/multi-type data correlation modeling framework called HGNN + to learn an optimal representation in a single hypergraph based framework. It is achieved by bridging multi-modal/multi-type data and hyperedge with hyperedge groups. Specifically, in our method, hyperedge groups are first constructed to represent latent high-order correlations in each specific modality/type with explicit or implicit graph structures. An adaptive hyperedge group fusion strategy is then used to effectively fuse the correlations from different modalities/types in a unified hypergraph. After that a new hypergraph convolution scheme performed in spatial domain is used to learn a general data representation for various tasks. We have evaluated this framework on several popular datasets and compared it with recent state-of-the-art methods. The comprehensive evaluations indicate that the proposed HGNN + framework can consistently outperform existing methods with a significant margin, especially when modeling implicit data correlations. We also release a toolbox called THU-DeepHypergraph for the proposed framework, which can be used for various of applications, such as data classification, retrieval and recommendation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助Diss采纳,获得10
1秒前
江江小菜鸡完成签到,获得积分10
3秒前
许陈静完成签到,获得积分10
4秒前
晓听竹雨完成签到,获得积分10
4秒前
4秒前
4秒前
6秒前
小马甲应助Julie采纳,获得10
7秒前
Disci完成签到,获得积分10
8秒前
一勺四季完成签到 ,获得积分10
9秒前
jjj发布了新的文献求助10
9秒前
9秒前
许陈静发布了新的文献求助10
10秒前
10秒前
自觉秋灵完成签到,获得积分10
12秒前
刘香发布了新的文献求助10
13秒前
14秒前
失眠醉易应助Ayn采纳,获得10
15秒前
科研通AI5应助Dashihhhh采纳,获得10
15秒前
17秒前
Drtaoao完成签到 ,获得积分10
17秒前
17秒前
18秒前
李爱国应助等待的花卷采纳,获得10
18秒前
一颗苹果完成签到,获得积分10
19秒前
香蕉觅云应助YP采纳,获得10
21秒前
廿廿廿发布了新的文献求助100
21秒前
王炸发布了新的文献求助10
22秒前
Julie发布了新的文献求助10
22秒前
647完成签到,获得积分10
23秒前
情怀应助大马哈鱼采纳,获得10
23秒前
23秒前
小谢完成签到,获得积分10
24秒前
刘星星发布了新的文献求助10
25秒前
开朗的香水蘑菇完成签到,获得积分10
25秒前
充电宝应助charry采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
26秒前
26秒前
小羊完成签到 ,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789363
求助须知:如何正确求助?哪些是违规求助? 3334368
关于积分的说明 10269614
捐赠科研通 3050834
什么是DOI,文献DOI怎么找? 1674175
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693