清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Combining Deep Learning and Radiomics for Automated, Objective, Comprehensive Bone Marrow Characterization From Whole-Body MRI

磁共振成像 分割 医学 无线电技术 全身成像 人工智能 多发性骨髓瘤 计算机科学 放射科 核医学 内科学
作者
Markus Wennmann,André Klein,Fabian Bauer,Jiří Chmelík,Martin Grözinger,Charlotte Uhlenbrock,Jakob Lochner,Tobias Nonnenmacher,Lukas T. Rotkopf,Sandra Sauer,Thomas Hielscher,Michael Götz,Ralf Floca,Peter Neher,David Bonekamp,Jens Hillengaß,Jens Kleesiek,Niels Weinhold,Tim Frederik Weber,Hartmut Goldschmidt
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:57 (11): 752-763 被引量:29
标识
DOI:10.1097/rli.0000000000000891
摘要

Objectives Disseminated bone marrow (BM) involvement is frequent in multiple myeloma (MM). Whole-body magnetic resonance imaging (wb-MRI) enables to evaluate the whole BM. Reading of such whole-body scans is time-consuming, and yet radiologists can transfer only a small fraction of the information of the imaging data set to the report. This limits the influence that imaging can have on clinical decision-making and in research toward precision oncology. The objective of this feasibility study was to implement a concept for automatic, comprehensive characterization of the BM from wb-MRI, by automatic BM segmentation and subsequent radiomics analysis of 30 different BM spaces (BMS). Materials and Methods This retrospective multicentric pilot study used a total of 106 wb-MRI from 102 patients with (smoldering) MM from 8 centers. Fifty wb-MRI from center 1 were used for training of segmentation algorithms (nnU-Nets) and radiomics algorithms. Fifty-six wb-MRI from 8 centers, acquired with a variety of different MRI scanners and protocols, were used for independent testing. Manual segmentations of 2700 BMS from 90 wb-MRI were performed for training and testing of the segmentation algorithms. For each BMS, 296 radiomics features were calculated individually. Dice score was used to assess similarity between automatic segmentations and manual reference segmentations. Results The “multilabel nnU-Net” segmentation algorithm, which performs segmentation of 30 BMS and labels them individually, reached mean dice scores of 0.88 ± 0.06/0.87 ± 0.06/0.83 ± 0.11 in independent test sets from center 1/center 2/center 3–8 (interrater variability between radiologists, 0.88 ± 0.01). The subset from the multicenter, multivendor test set (center 3–8) that was of high imaging quality was segmented with high precision (mean dice score, 0.87), comparable to the internal test data from center 1. The radiomic BM phenotype consisting of 8880 descriptive parameters per patient, which result from calculation of 296 radiomics features for each of the 30 BMS, was calculated for all patients. Exemplary cases demonstrated connections between typical BM patterns in MM and radiomic signatures of the respective BMS. In plausibility tests, predicted size and weight based on radiomics models of the radiomic BM phenotype significantly correlated with patients' actual size and weight ( P = 0.002 and P = 0.003, respectively). Conclusions This pilot study demonstrates the feasibility of automatic, objective, comprehensive BM characterization from wb-MRI in multicentric data sets. This concept allows the extraction of high-dimensional phenotypes to capture the complexity of disseminated BM disorders from imaging. Further studies need to assess the clinical potential of this method for automatic staging, therapy response assessment, or prediction of biopsy results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾珍完成签到 ,获得积分10
刚刚
妇产科医生完成签到 ,获得积分10
3秒前
sgz666完成签到 ,获得积分10
16秒前
木木完成签到 ,获得积分10
22秒前
aiyawy完成签到 ,获得积分10
22秒前
忘忧Aquarius完成签到,获得积分10
33秒前
万邦德完成签到,获得积分10
41秒前
捡子完成签到 ,获得积分10
50秒前
111完成签到 ,获得积分10
54秒前
ajin完成签到,获得积分20
57秒前
聪慧芷巧完成签到,获得积分10
1分钟前
善善完成签到 ,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
1分钟前
矛头蝮应助科研通管家采纳,获得10
1分钟前
jh完成签到 ,获得积分10
1分钟前
珂珂完成签到 ,获得积分10
1分钟前
梦璃完成签到 ,获得积分10
2分钟前
kenchilie完成签到 ,获得积分10
2分钟前
LeoBigman完成签到 ,获得积分10
2分钟前
北笙完成签到 ,获得积分0
2分钟前
任性的岱周完成签到,获得积分10
2分钟前
草拟大坝完成签到 ,获得积分0
2分钟前
路路完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
AZN完成签到 ,获得积分10
3分钟前
123321完成签到 ,获得积分10
3分钟前
心无杂念完成签到 ,获得积分10
3分钟前
郭磊完成签到 ,获得积分10
3分钟前
图喵喵完成签到,获得积分10
3分钟前
通科研完成签到 ,获得积分10
4分钟前
YMM完成签到,获得积分10
4分钟前
CHEN完成签到 ,获得积分10
4分钟前
Ava应助老实的采蓝采纳,获得10
5分钟前
狼来了aas完成签到,获得积分10
5分钟前
5分钟前
5分钟前
gege完成签到,获得积分10
5分钟前
老实的采蓝完成签到,获得积分10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4197665
求助须知:如何正确求助?哪些是违规求助? 3733219
关于积分的说明 11755000
捐赠科研通 3406847
什么是DOI,文献DOI怎么找? 1869384
邀请新用户注册赠送积分活动 925306
科研通“疑难数据库(出版商)”最低求助积分说明 835827