Knowledge distillation guided by multiple homogeneous teachers

初始化 同种类的 计算机科学 分类器(UML) 功能(生物学) 蒸馏 相似性(几何) 机器学习 人工智能 数学教育 数学 图像(数学) 色谱法 生物 进化生物学 组合数学 化学 程序设计语言
作者
Quanzheng Xu,Liyu Liu,Bing Ji
出处
期刊:Information Sciences [Elsevier BV]
卷期号:607: 230-243 被引量:4
标识
DOI:10.1016/j.ins.2022.05.117
摘要

Knowledge distillation (KD) transfers knowledge from a heavy teacher network to a lightweight student network while maintaining the student’s performance closely to that of the teacher. However, the large gap between the teacher and the student in terms of capacity is not conducive to KD. Consequently, a large teacher network is not necessarily the most suitable teacher to guide the student. Therefore, this study proposes a multiple homogeneous teacher-guided KD method. First, multiple networks with the same structure as that of the student are pretrained to act as a teacher group, which is different from utilizing a large teacher network in traditional KD, to alleviate the capacity gap between the teacher and student. Second, a confidence-adaptive initialization strategy is developed to initialize the student network, which learns knowledge from the pretrained teacher group. Experiments are performed on CIFAR10, CIFAR100, and Tiny-ImageNet using three networks. The experimental results demonstrate that the proposed KD method outperforms existing advanced KD methods. Furthermore, a similarity loss function is introduced to optimize the parameters of the classifier in the student network. The experimental results indicate that this loss function improves the performance for basic classification tasks without KD and efficiently works in the proposed KD method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
詹严青发布了新的文献求助30
刚刚
刚刚
无wu发布了新的文献求助10
刚刚
刚刚
Xianhe完成签到 ,获得积分10
1秒前
spenley完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
caresse完成签到,获得积分10
2秒前
3秒前
3秒前
11完成签到 ,获得积分10
3秒前
瓢瓢完成签到,获得积分10
3秒前
3秒前
xziyou发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
祖金杰完成签到,获得积分20
4秒前
Owen应助一马奔腾采纳,获得10
5秒前
qqq发布了新的文献求助10
5秒前
5秒前
CC完成签到,获得积分10
5秒前
6秒前
怡然的向南完成签到,获得积分10
6秒前
6秒前
北过居庸完成签到,获得积分10
6秒前
ljlbest1984发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
阳洋发布了新的文献求助10
8秒前
科研通AI5应助WY采纳,获得10
8秒前
8秒前
cj发布了新的文献求助10
8秒前
科研通AI5应助xziyou采纳,获得10
8秒前
HEIKU应助sensen采纳,获得10
8秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839094
求助须知:如何正确求助?哪些是违规求助? 3381478
关于积分的说明 10518394
捐赠科研通 3100886
什么是DOI,文献DOI怎么找? 1707833
邀请新用户注册赠送积分活动 821944
科研通“疑难数据库(出版商)”最低求助积分说明 773056