Adaptive-order proximity learning for graph-based clustering

聚类分析 计算机科学 基质(化学分析) 人工智能 图形 理论计算机科学 机器学习 复合材料 材料科学
作者
Danyang Wu,Wei Chang,Jitao Lu,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:126: 108550-108550 被引量:22
标识
DOI:10.1016/j.patcog.2022.108550
摘要

Recently, structured proximity matrix learning, which aims to learn a structured proximity matrix with explicit clustering structures from the first-order proximity matrix, has become the mainstream of graph-based clustering. However, the first-order proximity matrix always lacks several must-links compared to the groundtruth in real-world data, which results in a mismatched problem and affects the clustering performance. To alleviate this problem, this work introduces the high-order proximity to structured proximity matrix learning, and explores a novel framework named Adaptive-Order Proximity Learning (AOPL) to learn a consensus structured proximity matrix from the proximities of multiple orders. To be specific, AOPL selects the appropriate orders first, then assigns weights to these selected orders adaptively. In this way, a consensus structured proximity matrix is learned from the proximity matrices of appropriate orders. Based on AOPL framework, two practical models with different properties are derived, namely AOPL-Root and AOPL-Log. Besides, AOPL and the derived models are regarded as the same optimization problem subjected to some slightly different constraints. An efficient algorithm is proposed to solve them and the corresponding theoretical analyses are provided. Extensive experiments on several real-world datasets demonstrate superb performance of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Hina完成签到,获得积分10
1秒前
dudu发布了新的文献求助10
3秒前
半夏发布了新的文献求助10
3秒前
4秒前
悠然发布了新的文献求助10
5秒前
顾己发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
小米粥完成签到,获得积分10
7秒前
7秒前
7秒前
Tao完成签到,获得积分10
8秒前
无奈的灵松完成签到 ,获得积分10
8秒前
左一完成签到,获得积分10
9秒前
9秒前
9秒前
狂野世立发布了新的文献求助10
9秒前
嘻嘻哈哈完成签到 ,获得积分10
9秒前
9秒前
科研小哥发布了新的文献求助10
9秒前
酷波er应助Amanda采纳,获得10
9秒前
斯文败类应助cheeen54采纳,获得10
10秒前
小杰完成签到 ,获得积分10
10秒前
10秒前
xiaowang完成签到,获得积分10
10秒前
斯文败类应助谦让碧菡采纳,获得10
11秒前
11秒前
充电宝应助柚子采纳,获得10
11秒前
liyajuan发布了新的文献求助10
12秒前
12秒前
风险事件发布了新的文献求助10
13秒前
大大怪完成签到,获得积分10
13秒前
繁荣的凝荷完成签到 ,获得积分10
13秒前
爆米花应助无奈的灵松采纳,获得30
13秒前
西扬完成签到,获得积分10
14秒前
qiujinlan发布了新的文献求助10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Topophrenia: Place, Narrative, and the Spatial Imagination 200
Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031