生物膜
化学
曝气
微生物学
废水
环境化学
硝化作用
铵
三氯生
细菌
制浆造纸工业
环境工程
氮气
有机化学
生物
环境科学
遗传学
医学
病理
工程类
作者
Claudia Sanchez-Huerta,Luca Fortunato,TorOve Leiknes,Pei‐Ying Hong
标识
DOI:10.1016/j.jhazmat.2022.128698
摘要
The presence of organic micropollutants (OMPs) in natural water bodies has become an emerging concern due to their fast dissemination into natural water sources, high persistence, ubiquitous nature, and detrimental impact on the environment and human health. This study evaluated the Membrane Aerated Biofilm Reactor (MABR) efficiency in the removal of 13 OMPs commonly reported in water. Results demonstrated that OMPs removal is dependent on biofilm thickness and bacterial cell density, microbial community composition and physicochemical properties of OMPs. Effective removals of ammonium and organic carbon (COD, >50%), acetaminophen (70%) and triclosan (99%) were obtained even at early stages of biofilm development (thickness < 0.33 mm, 2.9 ×105 cell mL-1). An increase in biofilm thickness and cell density (1.02 mm, 2.2 ×106 cell mL-1) enhanced the system performance. MABR achieved over 90% removal of nonpolar, hydrophobic and hydrophilic OMPs and 22-69% removal of negatively charged and acidic OMPs. Relative abundances of Zoogloea, Aquabacterium, Leucobacter, Runella, and Paludilbaculum bacteria correlated with the removal of certain OMPs. In addition, MABR achieved up to 96% nitrification and 80% overall COD removal by the end of the experiment. The findings from this study demonstrated MABRs to be a feasible option to treat municipal wastewater polluted by OMPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI