卷积神经网络
噪音(视频)
计算机科学
地震模拟
地震学
降噪
人工神经网络
地震噪声
断层(地质)
模式识别(心理学)
人工智能
数据挖掘
地质学
地震反演
图像(数学)
数学
几何学
方位角
作者
Ruishan Du,Wenhao Liu,Xiaofei Fu,Lingdong Meng,Zhigang Liu
标识
DOI:10.1016/j.aej.2022.03.008
摘要
With the explosive growth in seismic data acquisition and the successful application of convolutional neural networks to various image processing tasks within multidisciplinary fields, many researchers have begun to research convolutional neural networks based seismic interpretation techniques. Seismic random noise attenuation is a key step in seismic data processing. In seismic data interpretation, faults are an important geological structure that has great significance for accumulation and migration of oil and gas reservoirs. Random noise within seismic data will seriously affect the accuracy of subsequent data processing and interpretation. Therefore, it is crucial to eliminate random noise in seismic data. This paper aimed to improve the Signal-to-Noise Ratio of seismic data, and proposed an intelligent convolutional neural network noise reduction framework. In this paper, the median filtering, the mean filtering, and the proposed algorithm is used to denoise seismic fault data. Experimental results show that the method not only yields a higher Signal-to-Noise Ratio, but also preserves more useful fault information.
科研通智能强力驱动
Strongly Powered by AbleSci AI