Exponential parameter and tracking error convergence guarantees for adaptive controllers without persistency of excitation

控制理论(社会学) 自适应控制 趋同(经济学) 计算机科学 指数函数 数学 数学优化 控制(管理) 人工智能 经济增长 数学分析 经济
作者
Girish Chowdhary,Maximilian Mühlegg,Eric N. Johnson
出处
期刊:International Journal of Control [Taylor & Francis]
卷期号:87 (8): 1583-1603 被引量:145
标识
DOI:10.1080/00207179.2014.880128
摘要

In model reference adaptive control (MRAC) the modelling uncertainty is often assumed to be parameterised with time-invariant unknown ideal parameters. The convergence of parameters of the adaptive element to these ideal parameters is beneficial, as it guarantees exponential stability, and makes an online learned model of the system available. Most MRAC methods, however, require persistent excitation of the states to guarantee that the adaptive parameters converge to the ideal values. Enforcing PE may be resource intensive and often infeasible in practice. This paper presents theoretical analysis and illustrative examples of an adaptive control method that leverages the increasing ability to record and process data online by using specifically selected and online recorded data concurrently with instantaneous data for adaptation. It is shown that when the system uncertainty can be modelled as a combination of known nonlinear bases, simultaneous exponential tracking and parameter error convergence can be guaranteed if the system states are exciting over finite intervals such that rich data can be recorded online; PE is not required. Furthermore, the rate of convergence is directly proportional to the minimum singular value of the matrix containing online recorded data. Consequently, an online algorithm to record and forget data is presented and its effects on the resulting switched closed-loop dynamics are analysed. It is also shown that when radial basis function neural networks (NNs) are used as adaptive elements, the method guarantees exponential convergence of the NN parameters to a compact neighbourhood of their ideal values without requiring PE. Flight test results on a fixed-wing unmanned aerial vehicle demonstrate the effectiveness of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子完成签到,获得积分10
1秒前
C胖胖发布了新的文献求助20
1秒前
英姑应助爱睡觉的虾米采纳,获得40
2秒前
4秒前
4秒前
ddstty完成签到,获得积分10
4秒前
星辰大海应助aaaar采纳,获得30
5秒前
8秒前
挺好的发布了新的文献求助10
9秒前
10秒前
10秒前
烛光完成签到 ,获得积分10
11秒前
zhang完成签到 ,获得积分10
13秒前
乐乐应助爱吃蒸蛋采纳,获得10
13秒前
chenchenchen发布了新的文献求助10
16秒前
奶油W完成签到,获得积分10
17秒前
19秒前
天天向上发布了新的文献求助10
21秒前
悦伶完成签到,获得积分10
22秒前
chenchenchen完成签到,获得积分10
23秒前
昵称发布了新的文献求助20
25秒前
激昂的逊完成签到 ,获得积分10
26秒前
28秒前
tree完成签到,获得积分10
28秒前
29秒前
bkagyin应助cherish采纳,获得10
30秒前
Jasper应助东木采纳,获得10
30秒前
童话艺术佳完成签到,获得积分10
30秒前
31秒前
32秒前
晨曦完成签到,获得积分10
32秒前
xiaohuihui发布了新的文献求助10
33秒前
执着雨泽关注了科研通微信公众号
33秒前
iNk应助科研通管家采纳,获得10
34秒前
Akim应助科研通管家采纳,获得10
34秒前
安静碧灵完成签到 ,获得积分10
34秒前
李爱国应助科研通管家采纳,获得10
34秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
孙燕应助科研通管家采纳,获得30
34秒前
Www发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942868
求助须知:如何正确求助?哪些是违规求助? 3487974
关于积分的说明 11046209
捐赠科研通 3218565
什么是DOI,文献DOI怎么找? 1778987
邀请新用户注册赠送积分活动 864496
科研通“疑难数据库(出版商)”最低求助积分说明 799542