子空间拓扑
卡尔曼滤波器
状态空间
数学
投影(关系代数)
算法
国家(计算机科学)
系统标识
鉴定(生物学)
计算机科学
数据建模
人工智能
植物
数据库
生物
统计
作者
Peter Van Overschee,Bart De Moor
出处
期刊:Automatica
[Elsevier BV]
日期:1994-01-01
卷期号:30 (1): 75-93
被引量:1893
标识
DOI:10.1016/0005-1098(94)90230-5
摘要
Recently a great deal of attention has been given to numerical algorithms for subspace state space system identification (N4SID). In this paper, we derive two new N4SID algorithms to identify mixed deterministic-stochastic systems. Both algorithms determine state sequences through the projection of input and output data. These state sequences are shown to be outputs of non-steady state Kalman filter banks. From these it is easy to determine the state space system matrices. The N4SID algorithms are always convergent (non-iterative) and numerically stable since they only make use of QR and Singular Value Decompositions. Both N4SID algorithms are similar, but the second one trades off accuracy for simplicity. These new algorithms are compared with existing subspace algorithms in theory and in practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI