发色团
绿色荧光蛋白
荧光
光化学
维多利亚多管发光水母
化学
蛋白质动力学
质子
氢键
分子动力学
分子
计算化学
有机化学
物理
光学
基因
量子力学
生物化学
摘要
The wild type green fluorescent protein (GFP) from Aequorea victoria has been extensively investigated with a strong focus on the photochemistry and structural dynamics that are linked with its diverse activities. GFP combines a number of remarkable, and some unique, features that are still intensely researched both experimentally and theoretically. The protein environment effectively inhibits deactivation pathways that are dominant in the isolated chromophore and is therefore responsible for the bright fluorescence. Its p-hydroxybenzylidene-imidazolidinone chromophore acts as a photoacid, and optical excitation triggers ultrafast proton transfer reactions in the active site. The microscopic details of the proton transfer mechanism through a hydrogen bonding network are discussed in this critical review. This property of the wild type GFP has provided the opportunity to characterise the role of the specific protein environment in the proton transfer reactions in comparison to photoacid reactions in the condensed phase. In addition, GFP displays a photochromic side reaction that is uniquely caused by electron transfer from a buried anionic glutamic acid to the optically excited chromophore. This phototransformation property has also been exploited in high resolution fluorescence microscopy techniques. The discussion in this review is extended to include vibrational spectroscopy and structural dynamics (106 references).
科研通智能强力驱动
Strongly Powered by AbleSci AI