差异进化
进化计算
水准点(测量)
进化算法
突变
计算机科学
集合(抽象数据类型)
计算
过程(计算)
一套
进化策略
适应度函数
机制(生物学)
数学优化
人工智能
数学
遗传算法
算法
机器学习
基因
程序设计语言
历史
生物化学
大地测量学
考古
地理
操作系统
化学
哲学
认识论
作者
Lixin Tang,Yun Dong,Jiyin Liu
标识
DOI:10.1109/tevc.2014.2360890
摘要
Differential evolution (DE) is a well-known optimization algorithm that utilizes the difference of positions between individuals to perturb base vectors and thus generate new mutant individuals. However, the difference between the fitness values of individuals, which may be helpful to improve the performance of the algorithm, has not been used to tune parameters and choose mutation strategies. In this paper, we propose a novel variant of DE with an individual-dependent mechanism that includes an individual-dependent parameter (IDP) setting and an individual-dependent mutation (IDM) strategy. In the IDP setting, control parameters are set for individuals according to the differences in their fitness values. In the IDM strategy, four mutation operators with different searching characteristics are assigned to the superior and inferior individuals, respectively, at different stages of the evolution process. The performance of the proposed algorithm is then extensively evaluated on a suite of the 28 latest benchmark functions developed for the 2013 Congress on Evolutionary Computation special session. Experimental results demonstrate the algorithm's outstanding performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI