Robust relationship inference in genome-wide association studies

全基因组关联研究 推论 人口分层 国际人类基因组单体型图计划 人口 遗传关联 计算机科学 生物 遗传学 人工智能 单核苷酸多态性 基因型 医学 基因 环境卫生
作者
Ani Manichaikul,Josyf C. Mychaleckyj,Stephen S. Rich,Kathleen Daly,Michèle M. Sale,Wei‐Min Chen
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:26 (22): 2867-2873 被引量:3583
标识
DOI:10.1093/bioinformatics/btq559
摘要

Abstract Motivation: Genome-wide association studies (GWASs) have been widely used to map loci contributing to variation in complex traits and risk of diseases in humans. Accurate specification of familial relationships is crucial for family-based GWAS, as well as in population-based GWAS with unknown (or unrecognized) family structure. The family structure in a GWAS should be routinely investigated using the SNP data prior to the analysis of population structure or phenotype. Existing algorithms for relationship inference have a major weakness of estimating allele frequencies at each SNP from the entire sample, under a strong assumption of homogeneous population structure. This assumption is often untenable. Results: Here, we present a rapid algorithm for relationship inference using high-throughput genotype data typical of GWAS that allows the presence of unknown population substructure. The relationship of any pair of individuals can be precisely inferred by robust estimation of their kinship coefficient, independent of sample composition or population structure (sample invariance). We present simulation experiments to demonstrate that the algorithm has sufficient power to provide reliable inference on millions of unrelated pairs and thousands of relative pairs (up to 3rd-degree relationships). Application of our robust algorithm to HapMap and GWAS datasets demonstrates that it performs properly even under extreme population stratification, while algorithms assuming a homogeneous population give systematically biased results. Our extremely efficient implementation performs relationship inference on millions of pairs of individuals in a matter of minutes, dozens of times faster than the most efficient existing algorithm known to us. Availability: Our robust relationship inference algorithm is implemented in a freely available software package, KING, available for download at http://people.virginia.edu/∼wc9c/KING. Contact: wmchen@virginia.edu Supplementary information: Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极的梦旋完成签到,获得积分10
2秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
LBM完成签到,获得积分10
6秒前
6秒前
桐桐应助李子彤采纳,获得10
6秒前
子勋发布了新的文献求助10
7秒前
Melooo3完成签到,获得积分10
8秒前
111发布了新的文献求助10
8秒前
情怀应助内向的远航采纳,获得10
9秒前
啊大大哇发布了新的文献求助10
9秒前
9秒前
思源应助wang5945采纳,获得10
9秒前
领导范儿应助从容诗云采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
JINtian发布了新的文献求助10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
开放青旋应助科研通管家采纳,获得10
13秒前
zho应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
开放青旋应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599265
求助须知:如何正确求助?哪些是违规求助? 4684848
关于积分的说明 14836659
捐赠科研通 4667343
什么是DOI,文献DOI怎么找? 2537858
邀请新用户注册赠送积分活动 1505330
关于科研通互助平台的介绍 1470764