亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Red Blood Cell Membrane Fragments but Not Intact Red Blood Cells Promote Calcium Oxalate Monohydrate Crystal Growth and Aggregation

医学 草酸钙 红细胞 红细胞膜 生物物理学 生物化学 内科学 生物
作者
Somchai Chutipongtanate,Visith Thongboonkerd
出处
期刊:The Journal of Urology [Lippincott Williams & Wilkins]
卷期号:184 (2): 743-749 被引量:11
标识
DOI:10.1016/j.juro.2010.03.107
摘要

No AccessJournal of UrologyInvestigative Urology1 Aug 2010Red Blood Cell Membrane Fragments but Not Intact Red Blood Cells Promote Calcium Oxalate Monohydrate Crystal Growth and Aggregation Somchai Chutipongtanate and Visith Thongboonkerd Somchai ChutipongtanateSomchai Chutipongtanate and Visith ThongboonkerdVisith Thongboonkerd View All Author Informationhttps://doi.org/10.1016/j.juro.2010.03.107AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: Cell membranes are thought to promote calcium oxalate kidney stone formation but to our knowledge the modulating effect of red blood cell membranes on calcium oxalate crystals has not been previously investigated. Thus, we examined the effects of red blood cell membrane fragments on calcium oxalate monohydrate and calcium oxalate dihydrate crystal growth and aggregation. Materials and Methods: Calcium oxalate monohydrate and calcium oxalate dihydrate crystals were treated with red blood cell membrane fragments or intact red blood cells from a healthy donor. Phase contrast microscopy was performed to evaluate crystal morphology and aggregation. We used ImageMaster™ 2D Platinum software to evaluate crystal size and spectrophotometric oxalate depletion assay to monitor crystal growth. Results: Red blood cell membrane fragments had significant promoting activity on calcium oxalate monohydrate crystal growth with an approximately 75% increase in size and aggregation with an approximately 2.5-fold increase in aggregate number compared to the control without membrane fragments or cells. Approximately 50% of calcium oxalate monohydrate crystals were adhered by red blood cell membrane fragments. Intact red blood cells had no significant effect on calcium oxalate monohydrate crystal growth or aggregation but they could transform calcium oxalate monohydrate to calcium oxalate dihydrate crystals. Red blood cell membrane fragments and intact red blood cells had no effect on calcium oxalate dihydrate crystals. The promoting activity of red blood cell membrane fragments on calcium oxalate monohydrate crystal growth was successfully confirmed by spectrophotometric oxalate depletion assay. Conclusions: To our knowledge our data provide the first direct evidence that red blood cell membrane fragments are a promoting factor for calcium oxalate monohydrate crystal growth and aggregation. Thus, they may aggravate calcium oxalate stone formation. References 1 : Distribution of organic matrix in calcium oxalate renal calculi. Calcif Tissue Int1981; 33: 211. Google Scholar 2 : Presence of lipids in urine, crystals and stones: implications for the formation of kidney stones. Kidney Int2002; 62: 2062. Google Scholar 3 : Glycosaminoglycans, proteins, and stone formation: adult themes and child's play. Pediatr Nephrol1996; 10: 656. Google Scholar 4 : Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. J Urol1993; 150: 239. Link, Google Scholar 5 : Nucleation, adhesion, and internalization of calcium-containing urinary crystals by renal cells. J Am Soc Nephrol1999; 10: S422. Google Scholar 6 : Citrate and renal calculi: an update. Miner Electrolyte Metab1994; 20: 371. Medline, Google Scholar 7 : Isolation from human calcium oxalate renal stones of nephrocalcin, a glycoprotein inhibitor of calcium oxalate crystal growth: Evidence that nephrocalcin from patients with calcium oxalate nephrolithiasis is deficient in gamma-carboxyglutamic acid. J Clin Invest1987; 79: 1782. Google Scholar 8 : Inhibition of calcium oxalate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci USA1992; 89: 426. Crossref, Medline, Google Scholar 9 : The urinary F1 activation peptide of human prothrombin is a potent inhibitor of calcium oxalate crystallization in undiluted human urine in vitro. Clin Sci (Lond)1995; 89: 533. Google Scholar 10 : Role of urinary bikunin in the inhibition of calcium oxalate crystallization. J Am Soc Nephrol1999; 10: S385. Google Scholar 11 : Identification of human urinary trefoil factor 1 as a novel calcium oxalate crystal growth inhibitor. J Clin Invest2005; 115: 3613. Google Scholar 12 : Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int1997; 51: 894. Crossref, Medline, Google Scholar 13 : Kidney stones. Lancet1998; 351: 1797. Google Scholar 14 : Membranes and their constituents as promoters of calcium oxalate crystal formation in human urine. Calcif Tissue Int2000; 66: 90. Google Scholar 15 : Intratubular crystallization of calcium oxalate in the presence of membrane vesicles: an in vitro study. Kidney Int2001; 59: 169. Google Scholar 16 : Specific modulatory effect of arachidonic acid on human red blood cell oxalate transport: clinical implications in calcium oxalate nephrolithiasis. J Am Soc Nephrol1999; 10: S381. Google Scholar 17 : Abnormal arachidonic acid content of red blood cell membranes and main lithogenic factors in stone formers. Nephrol Dial Transplant2000; 15: 1388. Google Scholar 18 : Mulberry particles formed by red blood cells in human weddelite stones. J Urol1983; 129: 855. Link, Google Scholar 19 : Factors determining types and morphologies of calcium oxalate crystals: Molar concentrations, buffering, pH, stirring and temperature. Clin Chim Acta2006; 367: 120. Google Scholar 20 : Urinary trefoil factor 1 is a novel potent inhibitor of calcium oxalate crystal growth and aggregation. J Urol2008; 179: 1615. Link, Google Scholar 21 : Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis2004; 25: 1327. Google Scholar 22 : Urine glycoprotein crystal growth inhibitors: Evidence for a molecular abnormality in calcium oxalate nephrolithiasis. J Clin Invest1985; 76: 1455. Google Scholar 23 : The dissolution of calcium oxalate kidney stones: A kinetic study. J Urol1982; 128: 205. Google Scholar 24 : Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture. Kidney Int1998; 54: 796. Google Scholar 25 : Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol2005; 16: 1904. Google Scholar 26 : Stone analysis. Urol Res2006; 34: 146. Google Scholar 27 : Controversial cases in endourology. J Endourol2006; 20: 612. Google Scholar 28 : Haemolytic uraemic syndrome with prolonged anuria and cortical calcification: a case report. Pediatr Nephrol1990; 4: 65. Google Scholar Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital and Center for Research in Complex Systems Sciences, Mahidol University, Bangkok, Thailand© 2010 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetailsCited byAssimos D (2019) Re: Geobiology Reveals how Human Kidney Stones Dissolve In VivoJournal of Urology, VOL. 201, NO. 4, (663-664), Online publication date: 1-Apr-2019. Volume 184Issue 2August 2010Page: 743-749 Advertisement Copyright & Permissions© 2010 by American Urological Association Education and Research, Inc.Keywordscrystallizationerythrocytescalcium oxalatekidney calculikidneyAcknowledgmentsDr. Suchai Sritippayawan provided stone former urine samples.MetricsAuthor Information Somchai Chutipongtanate More articles by this author Visith Thongboonkerd More articles by this author Expand All Advertisement PDF downloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
李巧儿发布了新的文献求助10
10秒前
24秒前
量子星尘发布了新的文献求助10
52秒前
allen7u给allen7u的求助进行了留言
53秒前
1分钟前
肖战战完成签到 ,获得积分10
1分钟前
1分钟前
why完成签到,获得积分10
1分钟前
合适尔珍发布了新的文献求助10
1分钟前
Yi完成签到 ,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
小马甲应助zz采纳,获得10
2分钟前
阿亮完成签到,获得积分10
2分钟前
合适尔珍发布了新的文献求助10
2分钟前
阿亮发布了新的文献求助30
2分钟前
科研通AI5应助合适尔珍采纳,获得10
2分钟前
大模型应助高兴听云采纳,获得30
2分钟前
2分钟前
情怀应助科研通管家采纳,获得10
3分钟前
桐桐应助dcm采纳,获得10
3分钟前
3分钟前
3分钟前
zz发布了新的文献求助10
4分钟前
monair完成签到 ,获得积分0
4分钟前
4分钟前
dcm发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Azlne完成签到,获得积分10
4分钟前
4分钟前
qjw发布了新的文献求助10
4分钟前
4分钟前
4分钟前
allen7u发布了新的文献求助10
4分钟前
qjw完成签到,获得积分10
4分钟前
合适尔珍发布了新的文献求助10
5分钟前
5分钟前
酷波er应助欢喜的怜菡采纳,获得10
5分钟前
高分求助中
Organic Chemistry 20086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4294440
求助须知:如何正确求助?哪些是违规求助? 3820684
关于积分的说明 11962467
捐赠科研通 3463423
什么是DOI,文献DOI怎么找? 1899741
邀请新用户注册赠送积分活动 947929
科研通“疑难数据库(出版商)”最低求助积分说明 850563