Efficient Medical Image Segmentation Based on Knowledge Distillation

计算机科学 软件可移植性 分割 图像分割 人工智能 卷积神经网络 推论 网络体系结构 机器学习 医学影像学 人工神经网络 数据挖掘 计算机视觉 模式识别(心理学) 计算机网络 程序设计语言
作者
Dian Qin,Jiajun Bu,Zhe Liu,Xin Shen,Sheng Zhou,Jingjun Gu,Zhihua Wang,Lei Wu,Dai Huifen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3820-3831 被引量:94
标识
DOI:10.1109/tmi.2021.3098703
摘要

Recent advances have been made in applying convolutional neural networks to achieve more precise prediction results for medical image segmentation problems. However, the success of existing methods has highly relied on huge computational complexity and massive storage, which is impractical in the real-world scenario. To deal with this problem, we propose an efficient architecture by distilling knowledge from well-trained medical image segmentation networks to train another lightweight network. This architecture empowers the lightweight network to get a significant improvement on segmentation capability while retaining its runtime efficiency. We further devise a novel distillation module tailored for medical image segmentation to transfer semantic region information from teacher to student network. It forces the student network to mimic the extent of difference of representations calculated from different tissue regions. This module avoids the ambiguous boundary problem encountered when dealing with medical imaging but instead encodes the internal information of each semantic region for transferring. Benefited from our module, the lightweight network could receive an improvement of up to 32.6% in our experiment while maintaining its portability in the inference phase. The entire structure has been verified on two widely accepted public CT datasets LiTS17 and KiTS19. We demonstrate that a lightweight network distilled by our method has non-negligible value in the scenario which requires relatively high operating speed and low storage usage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24完成签到,获得积分10
刚刚
hytdr完成签到 ,获得积分20
刚刚
1秒前
1秒前
啦啦啦哟完成签到,获得积分10
1秒前
DawudShan完成签到,获得积分10
2秒前
人来人往发布了新的文献求助10
2秒前
深情未来完成签到,获得积分10
2秒前
chen完成签到,获得积分10
2秒前
2秒前
科研通AI5应助张一二二二采纳,获得10
3秒前
学术垃圾发布了新的文献求助10
4秒前
月宸发布了新的文献求助10
4秒前
MichaelQin发布了新的文献求助10
4秒前
科目三应助好想吃不胖采纳,获得10
4秒前
共享精神应助66m37采纳,获得10
4秒前
香蕉觅云应助guanyu108采纳,获得10
4秒前
优美丹雪发布了新的文献求助10
4秒前
放大镜完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
大菠萝发布了新的文献求助10
5秒前
Akim应助illusion采纳,获得10
5秒前
wang研通发布了新的文献求助30
5秒前
Orange应助blueming采纳,获得10
6秒前
机智寻雪完成签到 ,获得积分10
7秒前
科研通AI5应助makara采纳,获得10
7秒前
852应助傢誠采纳,获得10
8秒前
8秒前
Hello应助Erin采纳,获得10
8秒前
岁月轻狂发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
666关闭了666文献求助
10秒前
11秒前
11秒前
不吃香菜完成签到,获得积分10
11秒前
闲听花落完成签到,获得积分10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813238
求助须知:如何正确求助?哪些是违规求助? 3357708
关于积分的说明 10387917
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689065
邀请新用户注册赠送积分活动 812546
科研通“疑难数据库(出版商)”最低求助积分说明 767177