Identifying influential nodes in social networks: A voting approach

投票 计算机科学 数理经济学 数学 政治学 法学 政治
作者
Liu Panfeng,Longjie Li,Shiyu Fang,Yukai Yao
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:152: 111309-111309 被引量:14
标识
DOI:10.1016/j.chaos.2021.111309
摘要

• Based on a voting mechanism, the VoteRank + + method is proposed to identify influential spreaders. • VoteRank + + considers the diversity of nodes in voting ability and the varying degrees of closeness between nodes in the voting process. • Experiments under both the SIR and LT models demonstrate the effectiveness of the proposed method in comparison with baselines. With the prosperity of social networks, the research of influence maximization has become growing importance and captured increasing attention from various disciplines. The key point in influence maximization is to identify a group of influential nodes that are scattered broadly in a network. In this regard, we propose the VoteRank + + method, which is a voting approach, to iteratively select the influential nodes. In the viewpoint of VoteRank + + , nodes with different degrees should carry different amounts of votes in consideration of the diversity of nodes in voting ability, and a node may vote differently for its neighbors by considering the varying degrees of closeness between nodes. Moreover, to reduce the overlapping of influential regions of spreaders, VoteRank + + discounts the voting ability of 2-hop neighbors of the selected nodes. Then, to avoid the cost of calculating the voting scores of all nodes in each iteration, only the nodes whose scores may change need to update their voting scores. To demonstrate the effectiveness of the proposed method, we employ both the Susceptible-Infected-Recovered and Linear Threshold models to simulate the spreading progress. Experimental results show that VoteRank + + outperforms the baselines on both spreading speed and infected scale in most of the cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tao完成签到,获得积分10
刚刚
刚刚
2秒前
顺利发布了新的文献求助10
2秒前
LLL完成签到 ,获得积分10
2秒前
旧城以西完成签到,获得积分20
2秒前
刻苦慕晴完成签到 ,获得积分10
2秒前
3秒前
3秒前
十三完成签到 ,获得积分10
4秒前
jiangjiang完成签到,获得积分20
5秒前
ppapppap发布了新的文献求助10
5秒前
6秒前
悦悦发布了新的文献求助10
6秒前
朴素海亦完成签到,获得积分10
6秒前
yztz应助完犊子采纳,获得10
7秒前
wy.he应助完犊子采纳,获得10
7秒前
7秒前
平淡茈发布了新的文献求助10
8秒前
曾经沛白完成签到 ,获得积分10
9秒前
9秒前
搜集达人应助王哒哒采纳,获得10
9秒前
彩色的沛凝完成签到,获得积分10
9秒前
爱科研完成签到,获得积分20
10秒前
北辰完成签到,获得积分10
11秒前
fxx完成签到 ,获得积分10
11秒前
外向的百川完成签到,获得积分10
11秒前
ppapppap发布了新的文献求助10
12秒前
微笑可乐发布了新的文献求助10
13秒前
gyh完成签到,获得积分10
15秒前
好玩和有趣完成签到,获得积分10
15秒前
顺利完成签到,获得积分20
16秒前
lyn完成签到,获得积分10
16秒前
华仔应助外向的百川采纳,获得10
16秒前
汉堡包应助smin采纳,获得10
16秒前
17秒前
popo6150完成签到 ,获得积分10
18秒前
19秒前
思源应助ding采纳,获得10
20秒前
qishi完成签到,获得积分10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965976
求助须知:如何正确求助?哪些是违规求助? 3511306
关于积分的说明 11157319
捐赠科研通 3245873
什么是DOI,文献DOI怎么找? 1793215
邀请新用户注册赠送积分活动 874245
科研通“疑难数据库(出版商)”最低求助积分说明 804286