Large-Scale Affine Matrix Rank Minimization With a Novel Nonconvex Regularizer

秩(图论) 收敛速度 计算机科学 符号 数学优化 基质(化学分析) 算法 数学 组合数学 计算机网络 算术 频道(广播) 复合材料 材料科学
作者
Zhi Wang,Yu Liu,Xin Luo,Jianjun Wang,Chao Gao,Dezhong Peng,Wu Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4661-4675 被引量:22
标识
DOI:10.1109/tnnls.2021.3059711
摘要

Low-rank minimization aims to recover a matrix of minimum rank subject to linear system constraint. It can be found in various data analysis and machine learning areas, such as recommender systems, video denoising, and signal processing. Nuclear norm minimization is a dominating approach to handle it. However, such a method ignores the difference among singular values of target matrix. To address this issue, nonconvex low-rank regularizers have been widely used. Unfortunately, existing methods suffer from different drawbacks, such as inefficiency and inaccuracy. To alleviate such problems, this article proposes a flexible model with a novel nonconvex regularizer. Such a model not only promotes low rankness but also can be solved much faster and more accurate. With it, the original low-rank problem can be equivalently transformed into the resulting optimization problem under the rank restricted isometry property (rank-RIP) condition. Subsequently, Nesterov’s rule and inexact proximal strategies are adopted to achieve a novel algorithm highly efficient in solving this problem at a convergence rate of $O(1/K)$ , with $K$ being the iterate count. Besides, the asymptotic convergence rate is also analyzed rigorously by adopting the Kurdyka- ojasiewicz (KL) inequality. Furthermore, we apply the proposed optimization model to typical low-rank problems, including matrix completion, robust principal component analysis (RPCA), and tensor completion. Exhaustively empirical studies regarding data analysis tasks, i.e., synthetic data analysis, image recovery, personalized recommendation, and background subtraction, indicate that the proposed model outperforms state-of-the-art models in both accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诗筠完成签到 ,获得积分0
刚刚
1秒前
脑洞疼应助小卢采纳,获得10
1秒前
何公主完成签到,获得积分10
1秒前
rputation完成签到 ,获得积分10
5秒前
wanci应助andy采纳,获得10
6秒前
6秒前
飞鸟完成签到,获得积分10
6秒前
欣喜眼神发布了新的文献求助10
7秒前
8秒前
华仔应助LX采纳,获得30
8秒前
NexusExplorer应助ada采纳,获得10
9秒前
勤奋的小懒虫完成签到 ,获得积分10
10秒前
小马甲应助hana采纳,获得10
10秒前
11秒前
喜洋洋发布了新的文献求助10
12秒前
ding应助依亦然采纳,获得10
13秒前
简单水蓉发布了新的文献求助30
13秒前
乐观小之应助欣喜眼神采纳,获得10
13秒前
14秒前
饱满翠绿发布了新的文献求助10
15秒前
XXYY发布了新的文献求助30
15秒前
科研通AI5应助勤劳的筝采纳,获得10
15秒前
whisper完成签到,获得积分20
17秒前
17秒前
梦溪完成签到 ,获得积分10
19秒前
英姑应助Conccuc采纳,获得10
19秒前
无情的匪完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
领导范儿应助123采纳,获得10
22秒前
22秒前
pannyfeng完成签到,获得积分10
22秒前
喃喃发布了新的文献求助10
24秒前
嘀嘀嘀发布了新的文献求助10
25秒前
whisper发布了新的文献求助10
26秒前
27秒前
27秒前
XXYY完成签到,获得积分10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805375
求助须知:如何正确求助?哪些是违规求助? 3350342
关于积分的说明 10348655
捐赠科研通 3066276
什么是DOI,文献DOI怎么找? 1683655
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243