Single-Image Super-Resolution for Remote Sensing Images Using a Deep Generative Adversarial Network With Local and Global Attention Mechanisms

计算机科学 判别式 人工智能 深度学习 卷积神经网络 鉴别器 光学(聚焦) 航程(航空) 模式识别(心理学) 机器学习 电信 探测器 光学 物理 复合材料 材料科学
作者
Yadong Li,Sébastien Mavromatis,Feng Zhang,Zhenhong Du,Jean Séqueira,Zhongyi Wang,Xianwei Zhao,Renyi Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-24 被引量:39
标识
DOI:10.1109/tgrs.2021.3093043
摘要

Super-resolution (SR) technology is an important way to improve spatial resolution under the condition of sensor hardware limitations. With the development of deep learning (DL), some DL-based SR models have achieved state-of-the-art performance, especially the convolutional neural network (CNN). However, considering that remote sensing images usually contain a variety of ground scenes and objects with different scales, orientations, and spectral characteristics, previous works usually treat important and unnecessary features equally or only apply different weights in the local receptive field, which ignores long-range dependencies; it is still a challenging task to exploit features on different levels and reconstruct images with realistic details. To address these problems, an attention-based generative adversarial network (SRAGAN) is proposed in this article, which applies both local and global attention mechanisms. Specifically, we apply local attention in the SR model to focus on structural components of the earth’s surface that require more attention, and global attention is used to capture long-range interdependencies in the channel and spatial dimensions to further refine details. To optimize the adversarial learning process, we also use local and global attentions in the discriminator model to enhance the discriminative ability and apply the gradient penalty in the form of hinge loss and loss function that combines $L1$ pixel loss, $L1$ perceptual loss, and relativistic adversarial loss to promote rich details. The experiments show that SRAGAN can achieve performance improvements and reconstruct better details compared with current state-of-the-art SR methods. A series of ablation investigations and model analyses validate the efficiency and effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山城小丸完成签到,获得积分10
1秒前
1秒前
Qumy应助金熙美采纳,获得10
5秒前
6秒前
7秒前
高高烙完成签到,获得积分10
9秒前
FashionBoy应助123采纳,获得10
9秒前
10秒前
11秒前
烟花应助CYY采纳,获得10
12秒前
小高同学发布了新的文献求助10
13秒前
14秒前
李天完成签到,获得积分10
15秒前
15秒前
兴奋的万声完成签到,获得积分10
16秒前
可耐的梦琪完成签到,获得积分10
29秒前
果粒橙完成签到 ,获得积分10
30秒前
亦雪发布了新的文献求助20
32秒前
n3pu030036应助小周碎碎念采纳,获得10
33秒前
35秒前
35秒前
彭于晏应助小高同学采纳,获得10
35秒前
充电宝应助科研通管家采纳,获得10
36秒前
科目三应助科研通管家采纳,获得10
36秒前
搜集达人应助liiiii采纳,获得10
36秒前
情怀应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
36秒前
李爱国应助科研通管家采纳,获得10
36秒前
Xenia应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
汉堡包应助科研通管家采纳,获得10
36秒前
深情安青应助科研通管家采纳,获得30
36秒前
37秒前
小虫学长应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
37秒前
Ava应助科研通管家采纳,获得10
37秒前
赘婿应助科研通管家采纳,获得10
37秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778363
求助须知:如何正确求助?哪些是违规求助? 3323989
关于积分的说明 10216917
捐赠科研通 3039279
什么是DOI,文献DOI怎么找? 1667934
邀请新用户注册赠送积分活动 798438
科研通“疑难数据库(出版商)”最低求助积分说明 758385