已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The high-strength and ultra-thin composite electrolyte using one-step electrospinning/electrostatic spraying process for interface control in all-solid-state lithium metal battery

电解质 材料科学 离子电导率 复合数 电极 化学工程 静电纺丝 聚合物 复合材料 化学 工程类 物理化学
作者
Lu Gao,Haoran Liang,Jianxin Li,Bowen Cheng,Nanping Deng,Weimin Kang
出处
期刊:Journal of Power Sources [Elsevier BV]
卷期号:515: 230622-230622 被引量:33
标识
DOI:10.1016/j.jpowsour.2021.230622
摘要

Using solid polymer electrolytes to replace liquid electrolytes is an effective strategy to improve the energy density and safety of lithium metal batteries. Herein, an ultra-thin and fast-ion-conducting composite polymer electrolyte is firstly prepared through novel one-step electrospinning/electrostatic spraying process. Different from the common solution casting method, the preparation process can ensure sufficient contact between the polymer and nanofibers, thereby effectively reducing the existence of internal defects in the electrolyte. Meanwhile, the ultra-thin thickness (∼40 μm) helps to achieve maximized interfacial contact and good compatibility, and the electrostatic spraying process can reduce the crystallinity of Polyethylene oxide (PEO) polymer under the action of electrostatic charge repulsion. Furthermore, multiple hydrogen bonding interactions can not only form a three-dimensional continuous ion conduction path at the polymer interface, but also enhance the mechanical and thermal stability of the composite electrolyte. The prepared Poly-m-phenyleneisophthalamide (PMIA)-PEO composite electrolyte exhibits superior ionic conductivity (2.9 × 10−4 S cm−1 at 30 °C), high mechanical strength (10.4 MPa) and wide electrochemical stability window (5.4 V). In particular, the composite electrolyte-based Li/Li symmetric cell and high-voltage LiNi0·8Mn0·1Co0·1O2 (NMC)/Li cell exhibit superior cycling stability, which verify the practical applicability of the all-solid-state composite electrolyte in Li metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助小青梅采纳,获得10
2秒前
科研通AI5应助mini采纳,获得10
4秒前
chuu完成签到,获得积分10
4秒前
甜美宛儿完成签到,获得积分10
7秒前
8秒前
流氓恐龙发布了新的文献求助10
8秒前
10秒前
TRY发布了新的文献求助10
13秒前
ZGH完成签到,获得积分10
13秒前
Jeffery发布了新的文献求助30
15秒前
小青梅完成签到,获得积分10
15秒前
无花果应助Nirvan采纳,获得10
20秒前
小蘑菇应助潇洒的雅阳采纳,获得10
20秒前
江离完成签到 ,获得积分10
23秒前
Lucas应助plant采纳,获得10
23秒前
Cyan完成签到,获得积分10
24秒前
西瓜完成签到 ,获得积分10
26秒前
26秒前
27秒前
27秒前
27秒前
27秒前
27秒前
28秒前
28秒前
28秒前
28秒前
28秒前
早上起床晚上睡觉完成签到,获得积分10
28秒前
29秒前
29秒前
29秒前
LeezZZZ发布了新的文献求助30
29秒前
30秒前
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
fanmo完成签到 ,获得积分0
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324642
关于积分的说明 10219085
捐赠科研通 3039619
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440