Attribute Sentiment Scoring with Online Text Reviews: Accounting for Language Structure and Missing Attributes

计算机科学 情绪分析 插补(统计学) 人工智能 赞扬 自然语言处理 缺少数据 分类器(UML) 情报检索 机器学习 心理学 社会心理学
作者
Ishita Chakraborty,Minkyung Kim,K. Sudhir
出处
期刊:Journal of Marketing Research [SAGE Publishing]
卷期号:59 (3): 600-622 被引量:55
标识
DOI:10.1177/00222437211052500
摘要

The authors address two significant challenges in using online text reviews to obtain fine-grained, attribute-level sentiment ratings. First, in contrast to methods that rely on word frequency, they develop a deep learning convolutional–long short-term memory hybrid model to account for language structure. The convolutional layer accounts for spatial structure (adjacent word groups or phrases), and long short-term memory accounts for the sequential structure of language (sentiment distributed and modified across nonadjacent phrases). Second, they address the problem of missing attributes in text when constructing attribute sentiment scores, as reviewers write about only a subset of attributes and remain silent on others. They develop a model-based imputation strategy using a structural model of heterogeneous rating behavior. Using Yelp restaurant review data, they show superior attribute sentiment scoring accuracy with their model. They identify three reviewer segments with different motivations: status seeking, altruism/want voice, and need to vent/praise. Surprisingly, attribute mentions in reviews are driven by the need to inform and vent/praise rather than by attribute importance. The heterogeneous model-based imputation performs better than other common imputations and, importantly, leads to managerially significant corrections in restaurant attribute ratings. More broadly, the results suggest that social science research should pay more attention to reducing measurement error in variables constructed from text.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhllhh完成签到,获得积分10
1秒前
左丘映易完成签到,获得积分0
1秒前
cdercder应助优秀的尔风采纳,获得10
1秒前
光亮若翠发布了新的文献求助50
2秒前
xczhu完成签到,获得积分10
9秒前
10秒前
aiyawy完成签到 ,获得积分10
11秒前
wei jie完成签到 ,获得积分10
12秒前
21秒前
如初完成签到,获得积分10
21秒前
ES完成签到 ,获得积分10
24秒前
Duke发布了新的文献求助10
26秒前
打打应助Attention采纳,获得10
28秒前
从容的水壶完成签到 ,获得积分10
29秒前
梓里楠木完成签到 ,获得积分20
30秒前
朱成豪发布了新的文献求助10
31秒前
34秒前
34秒前
mm完成签到,获得积分10
35秒前
ii完成签到 ,获得积分10
36秒前
38秒前
Hello应助朱成豪采纳,获得10
40秒前
Attention发布了新的文献求助10
42秒前
东郭凝蝶完成签到 ,获得积分10
44秒前
莹yy完成签到 ,获得积分10
46秒前
伊叶之丘完成签到 ,获得积分10
47秒前
芒芒发paper完成签到 ,获得积分10
54秒前
1分钟前
紫金之巅完成签到 ,获得积分10
1分钟前
天将明完成签到 ,获得积分10
1分钟前
1分钟前
陈鹿华完成签到 ,获得积分10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
byron完成签到 ,获得积分10
1分钟前
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
Shoujiang完成签到 ,获得积分10
1分钟前
嘉嘉发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833913
求助须知:如何正确求助?哪些是违规求助? 3376342
关于积分的说明 10492639
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704748
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859