Attribute Sentiment Scoring with Online Text Reviews: Accounting for Language Structure and Missing Attributes

计算机科学 情绪分析 插补(统计学) 人工智能 赞扬 自然语言处理 缺少数据 分类器(UML) 情报检索 机器学习 心理学 社会心理学
作者
Ishita Chakraborty,Minkyung Kim,K. Sudhir
出处
期刊:Journal of Marketing Research [SAGE]
卷期号:59 (3): 600-622 被引量:77
标识
DOI:10.1177/00222437211052500
摘要

The authors address two significant challenges in using online text reviews to obtain fine-grained, attribute-level sentiment ratings. First, in contrast to methods that rely on word frequency, they develop a deep learning convolutional–long short-term memory hybrid model to account for language structure. The convolutional layer accounts for spatial structure (adjacent word groups or phrases), and long short-term memory accounts for the sequential structure of language (sentiment distributed and modified across nonadjacent phrases). Second, they address the problem of missing attributes in text when constructing attribute sentiment scores, as reviewers write about only a subset of attributes and remain silent on others. They develop a model-based imputation strategy using a structural model of heterogeneous rating behavior. Using Yelp restaurant review data, they show superior attribute sentiment scoring accuracy with their model. They identify three reviewer segments with different motivations: status seeking, altruism/want voice, and need to vent/praise. Surprisingly, attribute mentions in reviews are driven by the need to inform and vent/praise rather than by attribute importance. The heterogeneous model-based imputation performs better than other common imputations and, importantly, leads to managerially significant corrections in restaurant attribute ratings. More broadly, the results suggest that social science research should pay more attention to reducing measurement error in variables constructed from text.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张发布了新的文献求助10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得50
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得50
2秒前
香蕉觅云应助小李采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
yznfly应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
yznfly应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
yznfly应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
yznfly应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
3秒前
666发布了新的文献求助10
3秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737686
求助须知:如何正确求助?哪些是违规求助? 5373939
关于积分的说明 15336077
捐赠科研通 4881050
什么是DOI,文献DOI怎么找? 2623314
邀请新用户注册赠送积分活动 1572041
关于科研通互助平台的介绍 1528887