MNIST数据库
聚类分析
计算机科学
数据挖掘
星团(航天器)
约束聚类
数据流聚类
相关聚类
独立同分布随机变量
CURE数据聚类算法
人工智能
机器学习
人工神经网络
数学
计算机网络
随机变量
统计
作者
Chengxi Li,Gang Li,Pramod K. Varshney
标识
DOI:10.1109/jiot.2021.3113927
摘要
In this article, we consider the problem of federated learning (FL) with training data that are non independent and identically distributed (non-IID) across the clients. To cope with data heterogeneity, an iterative federated clustering algorithm (IFCA) has been proposed. IFCA partitions the clients into a number of clusters and lets the clients in the same cluster optimize a shared model. However, in IFCA, the clusters are nonoverlapping, which leads to an inefficient utilization of the local information since the knowledge of a client is used by only one cluster during each round. To capture the complex nature of real-world data, soft clustering methods with overlapping clusters have been proposed that attain superior performance over the hard ones. Motivated by this, we propose a new algorithm named FL with soft clustering (FLSC) by combining the strengths of soft clustering and IFCA, where the clients are partitioned into overlapping clusters and the information of each participating client is used by multiple clusters simultaneously during each round. The experimental results show that FLSC achieves better learning performance on the classification tasks on the MNIST and Fashion-MNIST data sets, compared with the state-of-the-art baseline methods, i.e., the global model method and IFCA.
科研通智能强力驱动
Strongly Powered by AbleSci AI